Organic Letters
Letter
5690−5707. (g) Liu, C.; Meng, G.; Liu, Y.; Liu, R.; Lalancette, R.;
Szostak, R.; Szostak, M. Org. Lett. 2016, 18, 4194−4197. (h) Meng, G.;
Shi, S.; Szostak, M. ACS Catal. 2016, 6, 7335−7339. (i) Liu, C.; Meng,
G.; Szostak, M. J. Org. Chem. 2016, 81, 12023−12030. (j) Meng, G.;
Szostak, M. Org. Lett. 2016, 18, 796−799. (k) Wu, H.; Cui, M.; Jian, J.;
Zeng, Z. Adv. Synth. Catal. 2016, 358, 3876−3880. (l) Lei, P.; Meng,
G.; Szostak, M. ACS Catal. 2017, 7, 1960−1965. (m) Liu, C.; Liu, Y.;
Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. Org. Lett. 2017, 19,
1434−1437. (n) Meng, G.; Lei, P.; Szostak, M. Org. Lett. 2017, 19,
2158. (o) Liu, Y.; Liu, R.; Szostak, M. Org. Biomol. Chem. 2017, 15,
1780−1785. (p) Wu, H.; Liu, T.; Cui, M.; Li, Y.; Jian, J.; Wang, H.;
Zeng, Z. Org. Biomol. Chem. 2017, 15, 536−540.
(11) For related ester activations, see: (a) Amaike, K.; Muto, K.;
Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134, 13573−13576.
(b) Muto, K.; Yamaguchi, J.; Musaev, D. G.; Itami, K. Nat. Commun.
2015, 6, 7508. (c) Meng, L.; Kamada, Y.; Muto, K.; Yamaguchi, J.;
Itami, K. Angew. Chem., Int. Ed. 2013, 52, 10048−10051. (d) Hong, X.;
Liang, Y.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 2017−2025.
(e) Lu, Q.; Yu, H.; Fu, Y. J. Am. Chem. Soc. 2014, 136, 8252−8260.
(f) LaBerge, N. A.; Love, J. A. Eur. J. Org. Chem. 2015, 2015, 5546−
5553. (g) Desnoyer, A. N.; Friese, F. W.; Chiu, W.; Drover, M. W.;
Patrick, B. O.; Love, J. A. Chem. - Eur. J. 2016, 22, 4070−4077.
(h) Guo, L.; Chatupheeraphat, A.; Rueping, M. Angew. Chem., Int. Ed.
2016, 55, 11810−11813. (i) Guo, L.; Rueping, M. Chem. - Eur. J. 2016,
22, 16787−16790. (j) Pu, X.; Hu, J.; Zhao, Y.; Shi, Z. ACS Catal. 2016,
6, 6692−6698. (k) Amaike, K.; Itami, K.; Yamaguchi, J. Chem. - Eur. J.
2016, 22, 4384−4388. (l) Takise, R.; Isshiki, R.; Muto, K.; Itami, K.;
Yamaguchi, J. J. Am. Chem. Soc. 2017, 139, 3340−3343.
ACKNOWLEDGMENTS
■
H.-H.L. acknowledges the DAAD for a doctoral fellowship.
REFERENCES
■
(1) For recent reviews on the Sonogashiro cross-coupling reaction,
see: (a) Sonogashira, K. In Handbook of Organopalladium Chemistry for
Organic Synthesis; Negishi, E.-I., Ed.; Wiley-Interscience: New York,
2002; pp 493−529. (b) Negishi, E.-I.; Anastasia, L. Chem. Rev. 2003,
103, 1979−2018. (c) Chinchilla, R.; Naj
874−922. (d) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450−1460.
(e) Chinchilla, R.; Naj
́
era, C. Chem. Rev. 2007, 107,
́
era, C. Chem. Soc. Rev. 2011, 40, 5084−5121.
(2) (a) Dzik, W. I.; Lange, P. P.; Gooßen, L. J. Chem. Sci. 2012, 3,
2671−2678. (b) Yamaguchi, J.; Itami, K. In Metal-Catalyzed Cross-
Coupling Reactions and More; de Meijere, A., Brase, S., Oestreich, M.,
̈
Eds.; Wiley-VCH: Weinheim, 2014; Vol 3, pp 1353−1355. (c) Colacot,
T. J., Ed. New Trends in Cross-Coupling: Theory and Applications; RSC:
Cambridge, UK, 2015.
(3) For reviews, see: (a) Langkopf, E.; Schinzer, D. Chem. Rev. 1995,
95, 1375−1408. (b) Shi Shun, A. L. K.; Tykwinski, R. R. Angew. Chem.,
Int. Ed. 2006, 45, 1034−1057. (c) Gleiter, R.; Werz, D. B. Chem. Rev.
2010, 110, 4447−4488.
(4) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed.
2004, 43, 3368−3398.
(5) Nishihara, Y.; Ikegashira, K.; Mori, A.; Hiyama, T. Chem. Lett.
1997, 26, 1233−1234.
(6) (a) Diederich, F., Stang, P. J., Tykwinski, R. R., Eds. Acetylene
Chemistry; Wiley-VCH: Weinheim, 2005. (b) Chinchilla, R.; Naj
Chem. Rev. 2014, 114, 1783−1826.
(7) (a) Tamaru, Y., Ed. Modern Organonickel Chemistry; Wiley-VCH,
2005. (b) Phapale, V. B.; Cardenas, D. J. Chem. Soc. Rev. 2009, 38,
́
era, C.
(12) For selected examples of Ni-catalyzed alkynylation of alkyl and
aryl halides, see: (a) Beletskaya, I. P.; Latyshev, G. V.; Tsvetkov, A. V.;
Lukashev, N. L. Tetrahedron Lett. 2003, 44, 5011−5013. (b) Vechorkin,
O.; Barmaz, D.; Proust, V.; Hu, X. J. Am. Chem. Soc. 2009, 131,
12078−12079. (c) Yi, J.; Lu, X.; Sun, Y.-Y.; Xiao, B.; Liu, L. Angew.
́
1598−1607. (c) Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org. Chem.
2013, 2013, 19−30. (d) Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270−
5298. (e) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014,
509, 299−309. (f) Ananikov, V. P. ACS Catal. 2015, 5, 1964−1971.
(g) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717−1726.
(8) (a) Meng, G.; Shi, S.; Szostak, M. Synlett 2016, 27, 2530−2540.
(b) Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413−1423. (c) Liu,
C.; Szostak, M. Chem. - Eur. J. 2017, 23, 7157−7173.
́
Chem., Int. Ed. 2013, 52, 12409−12413. (d) Perez García, P. M.; Ren,
P.; Scopelliti, R.; Hu, X. ACS Catal. 2015, 5, 1164−1171.
(13) For a palladium-catalyzed decarbonylative alkynylation reaction
of esters, see: (a) Okita, T.; Kumazawa, K.; Takise, R.; Muto, K.; Itami,
K.; Yamaguchi, J. Chem. Lett. 2017, 46, 218−220. For a palladium-
catalyzed alkynylation of amides leading to ynones, see: (b) Cui, M.;
Wu, H.; Jian, J.; Wang, H.; Liu, C.; Daniel, S.; Zeng, Z. Chem.
Commun. 2016, 52, 12076−12079.
(9) For Ni-catalyzed decarbonylative transformations of amides, see:
(a) Shi, S.; Meng, G.; Szostak, M. Angew. Chem., Int. Ed. 2016, 55,
6959−6963. (b) Hu, J.; Zhao, Y.; Liu, J.; Zhang, Y.; Shi, Z. Angew.
Chem., Int. Ed. 2016, 55, 8718−8722. (c) Dey, A.; Sasmal, S.; Seth, K.;
Lahiri, G. K.; Maiti, D. ACS Catal. 2017, 7, 433−437. (d) Yue, H.;
Guo, L.; Liao, H.-H.; Cai, Y.; Zhu, C.; Rueping, M. Angew. Chem., Int.
Ed. 2017, 56, 4282−4285. (e) Yue, H.; Guo, L.; Lee, S.-C.; Liu, X.;
Rueping, M. Angew. Chem., Int. Ed. 2017, 56, 3972−3976. For further
Ni-catalyzed transformations of amides, see: (f) Hie, L.; Nathel, N. F.
F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K.
N.; Garg, N. K. Nature 2015, 524, 79−83. (g) Shi, S.; Szostak, M.
Chem. - Eur. J. 2016, 22, 10420−10424. (h) Simmons, B. J.; Weires, N.
A.; Dander, J. E.; Garg, N. K. ACS Catal. 2016, 6, 3176−3179.
(i) Baker, E. L.; Yamano, M. M.; Zhou, Y.; Anthony, S. M.; Garg, N. K.
Nat. Commun. 2016, 7, 11554. (j) Hie, L.; Baker, E. L.; Anthony, S.
M.; Desrosiers, J. N.; Senanayake, C.; Garg, N. K. Angew. Chem., Int.
Ed. 2016, 55, 15129−15132. (k) Shi, S.; Szostak, M. Org. Lett. 2016,
18, 5872−5875. (l) Dander, J. E.; Weires, N. A.; Garg, N. K. Org. Lett.
2016, 18, 3934−3936. (m) Weires, N. A.; Baker, E. L.; Garg, N. K.
Nat. Chem. 2016, 8, 75−79. (n) Simmons, B. J.; Hoffmann, M.;
Hwang, J.; Jackl, M. K.; Garg, N. K. Org. Lett. 2017, 19, 1910−1913.
(o) Deguchi, T.; Xin, H.-L.; Morimoto, H.; Ohshima, T. ACS Catal.
2017, 7, 3157−3161.
(14) Formation of the enyne dimerization product was sometimes
observed during the optimization studies.
(15) For details on the optimization screening table of nickel(II)
catalyzed cross-coupling reactions of amides, see Table S1 in the
(16) N-Ph,Me and N-Bn,Boc amides were also tested in the reaction;
however, only the starting materials were recovered.
(17) Acetylenes, such as phenylacetylene and n-butylacetylene, were
also tested; unfortunately, we did not isolate any trace of the desired
product.
(18) Attempts to synthesize a diyne compound were not successful
under the present reaction conditions.
(10) For further metal-catalyzed cross-coupling reactions with
amides, see: (a) Meng, G.; Szostak, M. Org. Lett. 2015, 17, 4364−
4367. (b) Li, X.; Zou, G. Chem. Commun. 2015, 51, 5089−5092.
(c) Li, X.; Zou, G. J. Organomet. Chem. 2015, 794, 136−145. (d) Yada,
A.; Okajima, S.; Murakami, M. J. Am. Chem. Soc. 2015, 137, 8708−
8711. (e) Meng, G.; Szostak, M. Angew. Chem., Int. Ed. 2015, 54,
14518−14522. (f) Meng, G.; Szostak, M. Org. Biomol. Chem. 2016, 14,
3094
Org. Lett. 2017, 19, 3091−3094