5
40
W. P. Gallagher, R. E. Maleczka, Jr.
LETTER
Table 4 Traditional vs. PMHS Mediated Sonogashira Couplings
Entry
Alkyne
Ar–ONf
Methoda
Cross-Coupled
Product
Homocoupled
Product
33 (39%)
33 (0%)
34 (92%)
34 (0%)
1
2
3
4
1
1
4
4
Aa
Ba
Aa
Ba
6 (48%)
6 (85%)
20 (0%)
20 (52%)
18
18
19
19
a
See Equation 4 for reaction conditions
H
Ar
(3) For recent advances see: (a) Fukuyama, T.; Shinmen, M.;
Nishitani, S.; Sato, M.; Ryu, I. Org. Lett. 2002, 4, 1691.
(b) Mori, A.; Ahmed, M. S. M.; Sekiguchi, A.; Masui, K.;
Koike, T. Chem. Lett. 2002, 756. (c) Heidenreich, R. G.;
Köhler, K.; Krauter, J. G. E.; Pietsch, J. Synlett 2002, 1118.
method A or B
+
R
R
R
R
(
d) Tzschucke, C. C.; Markert, C.; Glatz, H.; Bannwarth, W.
Equation 4 Method A: Et N (2.0 equiv), PdCl (PPh ) (0.05 equiv),
3
2
3 2
Angew. Chem. Int. Ed. 2002, 41, 4500. (e) Choudary, B.
M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B.
J. Am. Chem. Soc. 2002, 124, 14127. (f) Liao, Y.; Fathi, R.;
Reitman, M.; Zhang, Y.; Yang, Z. Tetrahedron Lett. 2001,
CuI (0.05 equiv), ArONf (1.5 equiv), THF, r.t. Method B: PMHS (2.0
equiv), PdCl (PPh ) (0.05 equiv), CuCl (0.05 equiv), ArONf (1.5
2
3 2
equiv), NMP, r.t.
42, 1815. (g) Marshall, J. A.; Chobanian, H. R.; Yanik, M.
It must also be acknowledged that some of the disadvan-
tages of employing 1-silylalkynes in Sonogashira cou-
plings remain under these conditions. Namely,
stoichiometric amounts of copper are necessary in the
coupling of halides. Furthermore, fluoride is required.
With respect to this last point, while most of our reactions
were run with a five-fold excess of CsF, the fluoride load
M. Org. Lett. 2000, 3, 4107. (h) Erdelyi, M.; Gogoll, A. J.
Org. Chem. 2001, 66, 4165. (i) Nishihara, Y.; Ando, J.-i.;
Kato, T.; Mori, A.; Hiyama, T. Macromolecules 2000, 33,
2779. (j) Alami, M.; Crousse, B.; Ferri, F. J. Organomet.
Chem. 2001, 624, 114. (k) Hundertmark, T.; Littke, A. L.;
Buchwald, S. L.; Fu, G. C. Org. Lett. 2000, 2, 1729.
1
6
(
l) Nishihara, Y.; Ikegashira, K.; Hirabayashi, K.; Ando, J.-
i.; Mori, A.; Hiyama, T. J. Org. Chem. 2000, 65, 1780.
(m) Böhm, V. P. W.; Herrmann, W. A. Eur. J. Org. Chem.
2000, 3679. (n) Nishihara, Y.; Ikegashira, K.; Mori, A.;
Hiyama, T. Chem. Lett. 1997, 1233.
could be reduced to 1.5 equivalents with no loss of effi-
ciency by using fused CsF/CsOH (2:1).17
Currently we aim to increase our mechanistic understand-
ing of this reaction and broaden its scope. Of particular in-
terest is the application of this new method to target
synthesis and the coupling of other species. New develop-
ments in these areas will be reported in due course.
3i,l
(
(
4) Mori et al. (ref. ) have found that using 1-silylalkynes in
place of their parent 1-alkynes allows one to perform a
Sonogashira reaction under neutral conditions with catalytic
3
g
amounts of Pd(0) and Cu(I). Marshall et al. (ref. ) also
reported a similar procedure, utilizing stoichiometric
amounts of CuCl and 2 equiv of Bu N.
3
5) For other examples of amine free Sonogashira-type
reactions see (a) Alonso, D. A.; Nájera, C.; Pacheco, C.
Tetrahedron Lett. 2002, 43, 9365. (b) Mori, A.; Shimada,
T.; Kondo, T.; Sekiguchi, A. Synlett 2001, 649.
(6) (a) Lawrence, N. J.; Drew, M. D.; Bushell, S. M. J. Chem.
Soc., Perkin Trans. 1 1999, 3381. (b) Lipowitz, J.;
Bowman, S. A. Aldrichimica Acta 1973, 6, 1. (c) Fieser,
M.; Fieser, L. F. Reagents for Organic Synthesis, Vol. 4;
Wiley: New York, 1974, 393.
7) CuTC = Copper(I) thiophene carboxylate. CuTC can be
easily made or purchased from Frontier Scientific. This
compound is sufficiently stable and does not require any
special handling when dry. CuCl must be kept and used
Acknowledgment
We thank the Yamanouchi USA Foundation and NSF (CHE-
9
984644), for their generous support. W.P.G. thanks Pfizer and
Dow Chemical for sponsorship of ACS Division of Organic and
MSU graduate fellowships, respectively.
References
(
(
1) Maleczka, R. E. Jr.; Gallagher, W. P. Org. Lett. 2001, 3,
173; and references cited.
2) For reviews see: (a) Sonogashira, K. J. Organomet. Chem.
002, 653, 46. (b) Sonogashira, K. In Metal-Catalyzed
4
(
under N to work efficiently. For other examples of CuTC in
2
2
coupling reactions see: (a) Savarin, C.; Srogl, J.;
Liebeskind, L. S. Org. Lett. 2001, 3, 91. (b) Liebeskind, L.
S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260.
Cross-Coupling Reactions; Diederich, F.; Stang, P. J., Eds.;
Wiley-VCH: New York, 1998, Chap. 5. (c) Brandsma, L.;
Vasilevsky, S. F.; Verkruijsse, H. D. Application of
Transition Metal Catalysts in Organic Synthesis; Springer-
Verlag: Berlin, 1998, Chap. 10. (d) Rossi, R.; Carpita, A.;
Bellina, F. Org. Prep. Proced. Int. 1995, 27, 127.
(c) Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996,
118, 2748.
(
(
8) Couplings of 1 and 2 with 1.0 or 1.5 equiv of CuTC were
lower yielding (44–68%).
9) (a) Rottländer, M.; Knochel, P. J. Org. Chem. 1998, 63, 203.
(
e) Sonogashira, K. In Comprehensive Organic Synthesis,
Vol. 3; Trost, B. M., Ed.; Pergamon: New York, 1991, Chap.
.4.
(
b) For a review of the preparation of alkenyl triflates see:
2
Lyapkalo, I. M.; Webel, M.; Reißig, H.-U. Eur. J. Org.
Chem. 2002, 1015.
Synlett 2003, No. 4, 537–541 ISSN 0936-5214 © Thieme Stuttgart · New York