Organic Letters
Letter
the combination MPW1PW9128/6-311+G(2d,p)-polarizable
continuum model was used for proton and carbon chemical
shift calculations.29 The sets of 1H and 13C chemical shifts were
compared by mean absolute error (MAE), R2 of δcalcd/δexpt, by
the linear regression of calculated (δscaled) and by the statistical
DP4+ parameter developed by Sarotti and co-workers.30 A 100%
probability DP4+ value for both carbon and proton chemical
shifts in favor to 1d was in agreement with the synthetic 3,5-epi-1
configuration.
Comparison of the optical rotation of (−)-thelepamide and
3,5-epi-1 showed them to be equal in sign and magnitude further
confirming the configuration to be 3S,5R,2′R. From the NMR
data, we could not make a direct assignment of the C2″-
configuration of the major thelepamide diastereomer. However,
DFT calculations suggest the configuration to be 2″R (1d).
In order to probe the reported biological activity for
thelepamide, the three synthetic diastereomers were tested
against the CCRF-CEM cell line. Unfortunately, no cytotoxicity
for concentrations up to 100 μM could be detected.
Unit, FMP, Berlin, Germany, for preparing the cytotoxicity
assays.
REFERENCES
■
(1) (a) Blunt, J. W.; Copp, B. R.; Keyzers, R. A.; Munro, M. H. G.;
Prinsep, M. R. Nat. Prod. Rep. 2017, 34, 235. (b) Newman, D. J.; Cragg,
G. M. Planta Med. 2016, 82, 775.
(2) Rodríguez, J.; Nieto, R. M.; Blanco, M.; Valeriote, F. A.; Jimen
́
ez,
C.; Crews, P. Org. Lett. 2014, 16, 464.
(3) Lubell, W. D., Ed. Peptidomimetics I; Topics in Heterocyclic
Chemistry 48; Springer International Publishing: Cham, 2017.
(4) Kobayashi, K.; Shimogawa, H.; Sakakura, A.; Teruya, T.; Suenaga,
K.; Kigoshi, H. Chem. Lett. 2004, 33, 1262.
(5) Smith, S. G.; Goodman, J. M. J. Am. Chem. Soc. 2010, 132, 12946.
(6) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807.
(7) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.
(8) (a) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
(b) Roche, C.; Labeeuw, O.; Haddad, M.; Ayad, T.; Genet, J.-P.;
Ratovelomanana-Vidal, V.; Phansavath, P. Eur. J. Org. Chem. 2009, 2009,
3977.
(9) Wang, L.; Xu, Z.; Ye, T. Org. Lett. 2011, 13, 2506.
In conclusion, we have completed a short and efficient
synthesis of (−)-thelepamide. Key steps include a catalyst
controlled thia-Michael addition and a sonication-assisted
oxazolidinone synthesis. Comparison of the spectra of three
synthetic diastereomers with those of isolated material led to a
revision of the structure of thelepamide from 1 to 1d, the sodium
carboxylate of 3,5-epi-1. In addition, DFT calculations support
the revised structure by including the correct protonation state of
pH-sensitive functional groups (e.g., carboxylic acid−carbox-
ylate) in the computational analysis.31
(10) Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447.
(11) Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945.
(12) Yoshida, Y.; Sakakura, Y.; Aso, N.; Okada, S.; Tanabe, Y.
Tetrahedron 1999, 55, 2183.
(13) (a) Ishii, Y.; Sakata, Y. J. Org. Chem. 1990, 55, 5545. (b) Zorb, A.;
̈
Bruckner, R. Eur. J. Org. Chem. 2010, 2010, 4785.
̈
(14) Helder, R.; Arends, R.; Bolt, W.; Hiemstra, H.; Wynberg, H.
Tetrahedron Lett. 1977, 18, 2181.
(15) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125,
12672.
(16) Li, B.-J.; Jiang, L.; Liu, M.; Chen, Y.-C.; Ding, L.-S.; Wu, Y. Synlett
2005, 603.
(17) Ricci, P.; Carlone, A.; Bartoli, G.; Bosco, M.; Sambri, L.;
Melchiorre, P. Adv. Synth. Catal. 2008, 350, 49.
(18) Xie, J.-W.; Chen, W.; Li, R.; Zeng, M.; Du, W.; Yue, L.; Chen, Y.-
C.; Wu, Y.; Zhu, J.; Deng, J.-G. Angew. Chem., Int. Ed. 2007, 46, 389.
(19) Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.; Sambri, L.;
Melchiorre, P. Org. Lett. 2007, 9, 1403.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Procedures and spectroscopic data (PDF)
(20) Starkenmann, C.; Troccaz, M.; Howell, K. Flavour Fragrance J.
2008, 23, 369.
Accession Codes
́
(21) Gonzalez-Rodríguez, C.; Parsons, S. R.; Thompson, A. L.; Willis,
CCDC 1587470 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge via
Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44 1223 336033.
M. C. Chem. - Eur. J. 2010, 16, 10950.
(22) Neises, B.; Steglich, W. Angew. Chem., Int. Ed. Engl. 1978, 17, 522.
(23) Jouglet, B.; Oumoch, S.; Rousseau, G. Synth. Commun. 1995, 25,
3869.
(24) Seitz, T.; Fu, P.; Haut, F.-L.; Adam, L.; Habicht, M.; Lentz, D.;
MacMillan, J. B.; Christmann, M. Org. Lett. 2016, 18, 3070.
(26) Willoughby, P. H.; Jansma, M. J.; Hoye, T. R. Nat. Protoc. 2014, 9,
643.
(27) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(28) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664.
(29) Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J. Chem. Rev. 2012,
112, 1839.
(30) (a) Grimblat, N.; Sarotti, A. M. Chem. - Eur. J. 2016, 22, 12246.
(b) Grimblat, N.; Zanardi, M. M.; Sarotti, A. M. J. Org. Chem. 2015, 80,
12526.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
(31) Saunders, C. M.; Tantillo, D. J. Mar. Drugs 2017, 15, 171.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The present research was financed in part by Grants from
́
Ministerio de Economia y Competitividad of Spain (AGL2015-
63740-C2-2-R and INMUNOTOP-RTC-2016-4611-1). J.R. and
R.E.M. acknowledge Xunta de Galicia and CESGA for the
computational facilities. We thank Silke Radetzki, Screening
D
Org. Lett. XXXX, XXX, XXX−XXX