September 2011
Preparation of High-Purity Metal Fluorides
2901
14S. Mitachi, T. Miyashita, and T. Manabe, “Preparation of Fluoride Opti-
cal Fibres for Transmission in the Mid-Infrared,” Phys. Chem. Glasses, 23,
196–201 (1982).
IV. Conclusions
A comprehensive purification method suited for all of the
ZBLANI:Yb3+ glass constituents was demonstrated for the
first time. We showed that CASE using APDC as a chelate
and MIBK/water as a two-phase system is effective in remov-
ing problematic transition-metal impurities from a ZrCl2O
solution. The transition-metal contamination was reduced by
almost 1000-fold, and a residual transition-metal concentra-
tion of ~100 ppb was achieved. Subsequent drying and fluori-
nation of the resulting metal fluorides in hot hydrogen
fluoride gas proved effective in removing residual oxygen-
based impurities, as confirmed by laser-cooling measure-
ments. This work is focused on optimization of CASE with
the APDC chelate, finding other chelates/solvent systems
with improved characteristics, and further developing the
process of drying and fluorination in HF gas. The suite of
processes presented herein is applicable to the preparation of
a wide range of ultra-pure binary fluorides, and it establishes
a foundation for the growth of a variety of fluoride crystals
and glasses for demanding photonic applications.
15M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of Laser Cooling in the
Yb3+-Doped Fluorozirconate Glass ZBLAN,” Phys. Rev. B, 75, 144302 (2007).
16E. O. Gbogi, K.-H. Chung, and C. T. Moynihan, “Surface and Bulk OH-
Infrared Absorption in ZrF4- and HfF4-Based Glasses,” J. Am. Ceram. Soc.,
64 C-51–3 (1981).
17P. W. France, S. F. Carter, J. R. Williams, and K. J. Beales, “OH-Abs-
orption in Fluoride Glass Infrared Fibres,” Electron. Lett., 20, 607–8 (1984).
18L. J. B. Vacha, C. T. Moynihan, B. B. Harbison, K. Cadien, R. Moss-
adegh, and P. C. Schultz, “Hermetic Coatings for Bulk Fluoride Glasses and
Fibres,” Int. J. Opt. Sensors, 2, 297–304 (1987).
19H. Poignant, pp. 35–56 in Halide Glasses for Infrared Fiber Optics, Edited
by R. M. Almeida. Nijhoff, Amsterdam, 1987.
20P. Kaiser, A. R. Tynes, H. W. Astle, A. D. Pearson, W. G. French, R. E.
Jaeger, and A. H. Cherin, “Spectral Losses of Unclad Vitreous Silica and
Soda-Lime-Silicate Fibers,” J. Opt. Soc. Am., 63, 1141–8 (1973).
+
21P. W. France, S. F. Carter, and J. R. Williams, “NH4 Absorption in
Fluoride Glass Infrared Fibers,” J. Am. Ceram. Soc., 67, C243–4 (1984).
22M. Poulain and M. Saad, “Absorption Loss Due to Complex Anions in
Fluorozirconate Glasses,” J. Lightwave. Tech., 2, 599–602 (1984).
23J. M. Jewell, J. Coon, and J. E. Shelby, “The Extinction Coefficient for
CO2 Dissolved in a Heavy-Metal Fluoride Glass,” Mat. Sci. Forum., 32–33,
421–6 (1988).
24D. R. MacFarlane, P. J. Newman, A. Voelkel, and E. Snitzer, “Methods
of Purification of Zirconium Tetrafluoride for Fluorozirconate Glass,” J. Am.
Ceram. Soc., 85, 1610–2 (2002).
25B. E. Kinsman and R. Hanney, “Preparation and Purification of Metal
Fluorides for Crystals and Glasses,” Adv. Materials for Opt. and Elect., 5,
109–15 (1995).
Acknowledgments
We thank Dr. Karl Kramer at the Department of Chemistry and Biochemis-
try, University of Bern, Switzerland, for his assistance with the design of the
hydrogen fluoride gas drying apparatus and for providing the sublimated ZrF4
used for the synthesis of Sample 6. We gratefully acknowledge the support of
the Air Force Office of Scientific Research under the Multidisciplinary Univer-
sity Research Initiative (MURI) program.
26A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive Atmosphere
Synthesis of Sol-Gel Heavy Metal Fluoride Glasses,” J. Mater. Res., 7,
1534–40 (1992).
27C. T. Moynihan, M. G. Drexhage, B. Bendow, M. Saleh Boulos, K. P.
Quinlan, K. H. Chung, and E. Gbogi, “Composition Dependence of Infrared
Edge Absorption in ZrF4 and HfF4 Based Glasses,” Mater. Res. Bull., 16,
25–30 (1981).
28M. Jardin, J. Guery, and C. Jacoboni, “Preparation in Vapour State
of Fluoride Glass Components by a Chemical Vapour Deposition Process,”
J. Non-Cryst. Solids, 184, 204–8 (1995).
References
1T. M. Bloomstein, M. W. Horn, M. Rothschild, R. R. Kunz, S. T. Palmacci,
and R. B. Goodman, “Lithography with 157 nm Lasers,” J. Vac. Sci. Technol.
B, 15, 2112–6 (1997).
29Y. Nishida, K. Fujiura, H. Sato, S. Sugawara, K. Kobayashi, and S. Ta-
kahashi, “Preparation of ZBLAN Fluoride Glass Particles by Chemical Vapor
Deposition Process,” Jpn. J. Appl. Phys. Part 2, 31, L1692–4 (1992).
30K. Fujiura, Y. Ohishi, M. Fujiki, T. Kanamori, and S. Takahashi,
“Process for the Preparation of Fluoride Glass and Process for the Prepara-
tion of Optical Fiber Preform Using the Fluoride Glass,” U.S. Patent, 5 [071]
460 (1991).
2S. Sudo, “Progress in Optical Fiber Amplifiers”; pp. 19–21 in Current
Trends in Optical Amplifiers and their Applications, Edited by T. P. Lee. World
Scientific, NJ, 1996.
3T. G. Brown, “Optical Fibers and Fiber-Optic Communications”; pp. 1–49
in Fiber Optics Handbook: Fiber, Devices and Systems for Optical Communica-
tions, Edited by M. Bass and E. W. van Stryland. McGraw-Hill, New York,
2002.
31H. Malissa and E. Schoffmann, “Uber die Verwendung von substituierten
Dithiocarbamaten in der Mikroanalyse,” Mikrochim. Acta, 1, 187–202 (1955).
32M. Arnac and G. Verboom, “Solubility Product Constants of Some Diva-
lent Metal Ions with Ammonium Pyrrolidine Dithiocarbamate,” Anal. Chem.,
46, 2059–61 (1974).
4S. Bedo, M. Pollnau, W. Luthy, and H. P. Weber, “Saturation of the
2.71 lm Laser Output in Erbium-Doped ZBLAN Fibers,” Opt. Commun.,
116, 81–6 (1995).
5X. Zhu and R. Jain, “Numerical Analysis and Experimental Results of
High-Power Er/Pr:ZBLAN 2.7 lm Fiber Lasers with Different Pumping
Designs,” Appl. Optics., 45, 7118–25 (2006).
33D. Bertrand, J. Guery, and C. Jacoboni, “Fe,Co,Ni,Cu Trace Metal Anal-
ysis in ZBLAN Fluoride Glasses,” J. Non-Cryst. Solids, 161, 32–5 (1993).
34R. R. Brooks, M. Hoashi, S. M. Wilson, and R. Q. Zhang, “Extraction
into Methyl Isobutyl Ketone of Metal Complexes with Ammonium Pyrrolidine
Dithio-Carbamate Formed in Strongly Acidic Media,” Anal. Chim. Acta, 217,
165–70 (1989).
6T. Sakamoto, M. Shimizu, T. Kanamori, Y. Terunuma, Y. Ohishi, M.
Yamada, and S. Sudo, “1.4-lm-Band Gain Characteristics of a Tm-Ho-Doped
ZBLYAN Fiber Amplifier Pumped in the 0.8-lm Band,” IEEE Photonics
Technol. Lett., 7, 983–5 (1995).
35J. D. Kinrade and J. C. van Loon, “Solvent Extraction for Use with
Flame Atomic Absorption Spectrometry,” Anal. Chem., 46, 1894–8 (1974).
36Z. Ling, Z. Chengshan, D. Gaoxian, and W. Kangkang, “ZrOCl2 for
Fluoride Glass Preparation,” J. Non-Cryst. Solids, 140, 331–4 (1992).
37R. Burkhalter, I. Dohnke, and J. Hulliger, “Growing of Bulk Crystals and
Structuring Waveguides of Fluoride Materials for Laser Applications,” Prog.
Cryst. Growth Charact. Mater., 42, 1–64 (2001).
7B. Pedersen, W. J. Miniscalco, and R. S. Quimby, “Optimization of Pr3+
-
ZBLAN Fiber Amplifiers,” IEEE Photonics Technol. Lett., 4 446–8 (1992).
8D. F. Anderson, “Cerium Fluoride – A Scintillator for High-Rate Applica-
tions,” Nucl. Instrum. Meth. Phys. Res. A, 287, 606–12 (1990).
9E. Auffray, D. Bouttet, I. Dafinei, J. Fay, P. Lecoq, J. A. Mares, M.
Martini, G. Maze, F. Meinardi, and B. Moine, “Cerium Doped Heavy Metal
Fluoride Glasses, a Possible Alternative for Electromagnetic Calorimetry,”
Instrum. Meth. Phys. Res. A, 380, 524–36 (1996).
38K. W. Kramer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R.
Luthi, “Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting
Upconversion Phosphors,” Chem. Mater., 16, 1244–51 (2004).
39W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P.
Hehlen, “Measurement of Solid-State Optical Refrigeration by Two-Band Dif-
ferential Luminescence Thermometry,” J. Opt. Soc. Am. B, 27, 611–8 (2010).
40W. M. Patterson, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen,
“Model of Laser-Induced Temperature Changes in Solid-State Optical Refrig-
erators,” J. Appl. Phys., 107, 063108 (2010).
10J. Freek Suijver, “Upconversion Phosphors”; pp. 133–75 in Luminescence:
From Theory to Applications, Edited by C. Ronda. Wiley-VCH, Weinheim,
2008.
11R. I. Epstein and M. Sheik-Bahae, “Optical Refrigeration in Solids: Fun-
damentals and Overview”; pp. 1–32 in Optical Refrigeration. Science and
Applications of Laser Cooling of Solids, Edited by R. I. Epstein and M. Sheik-
Bahae. Wiley, Weinheim, 2009.
12W. G. Rellergert, D. DeMille, R. R. Greco, M. P. Hehlen, J. R. Torger-
son, and E. R. Hudson, “Constraining the Evolution of the Fundamental
Constants with a Solid-State Optical Frequency Reference Based on the
41M. Poulain, J. Lucas, and P. Brun, “Fluorated Glass from Zirconium Tet-
rafluoride – Optical Properties of a Doped Glass in Nd3+,” Mat. Res. Bull.,
10, 243–6 (1975).
Th-229 Nucleus,” Phys. Rev. Lett., 104, 200802 (2010).
42S. W. Kwon, E. H. Kim, B. G. Ahn, J. H. Yoo, and H. G. Ahn, “Fluori-
nation of Metals and Metal Oxides by Gas-Solid Reaction,” J. Ind. Eng.
13Y. Ohishi, S. Mitachi, T. Kanamori, and T. Manabe, “Optical Absorption
of 3d Transition-Metal and Rare-Earth Elements in Zirconium Fluoride
Glasses,” Phys. Chem. Glasses, 24, 135–40 (1983).
Chem., 8, 477–82 (2002).
h