Published on Web 07/29/2005
Synthesis and Energy-Transfer Properties of
Hydrogen-Bonded Oligofluorenes
Stephen P. Dudek, Maarten Pouderoijen, Robert Abbel,
Albertus P. H. J. Schenning,* and E. W. Meijer*
Contribution from the Laboratory of Macromolecular and Organic Chemistry, EindhoVen
UniVersity of Technology, P.O. Box 513, 5600 MB EindhoVen, The Netherlands
Received March 31, 2005; E-mail: a.p.h.j.schenning@tue.nl; e.w.meijer@tue.nl
Abstract: A set of fluorene oligomers has been synthesized by stepwise palladium-catalyzed (Suzuki)
couplings of fluorene monomers. Ureidopyrimidinones (UPy), functional groups that can dimerize via
quadruple hydrogen bonds, were attached to both ends of the oligofluorenes. The resulting bis-UPy-
terminated oligomers self-assemble into supramolecular chain polymers. For comparison, oligofluorenes
of the same oligomer lengths but without terminal hydrogen-bonding groups were synthesized. Chains of
hydrogen-bonded fluorenes can be simply endcapped by a variety of chain stoppers, molecules that have
one UPy group. In this manner, we have endcapped the hydrogen-bonded fluorene chains with either
oligo(p-phenylenevinylene) or perylene bisimide. Energy-transfer experiments in solution and the solid state
demonstrate that oligofluorenes can donate energy to a variety of energy acceptors, but that this energy
transfer occurs most effectively when the donor fluorene is hydrogen-bonded to the acceptor.
Introduction
hydrogen-bonding groups without having phase segregation
between the energy donor and acceptor material. To demonstrate
π-Conjugated polymers1 have been extensively investigated
as alternatives to inorganic semiconductor components in
devices such as field-effect transistors, solar cells, and light-
emitting diodes. Polymers, however, can suffer from inhomo-
geneities such as chain defects that may limit electronic
performance. Instead, many groups2,3 have synthesized and
studied defect-free π-conjugated oligomers to determine how
the electronic properties of a material change with chain
length.3,4 Yet, it can be difficult to synthesize oligomers that
are long enough to have mechanical properties useful for
incorporation into devices. Short oligomers often need to be
vacuum-deposited and do not readily form films.
this concept of modularity, we have chosen to work with
oligomers of fluorene (Chart 1). Chiefly explored for blue light-
emitting diodes, oligo- and polyfluorenes7 are thermally stable
and have high fluorescence quantum yields.8-13 2-Ureido-4[1H]-
pyrimidinone (UPy)14 groups were attached to the ends of a set
of oligofluorenes (Chart 1, UPy-OFn-UPy). The UPy group
dimerizes strongly via four hydrogen bonds with a dimerization
constant of 6 × 10-7 M in chloroform15 (Chart 1). The blue
emissive bis-UPy oligofluorenes can be endcapped with either
UPy-terminated oligo(p-phenylenevinylene) or perylene bis-
imide, green and red emissive dyes, respectively (Chart 1).
The well-defined electronic properties of the monodisperse
oligomer and the processability of a polymer can be combined
using supramolecular polymers composed of oligomers. Previ-
ously, we attached a conjugated oligo(p-phenylenevinylene) to
aliphatic molecules bis-terminated with self-complementary
hydrogen-bonding groups,5 resulting in supramolecular hydrogen-
bonded polymers useful in photovoltaic devices.6 One advantage
of supramolecular polymers is their modularity, permitting
tuning of the polymer’s electronic properties. For example, the
emission wavelength in supramolecular polymers can be
adjusted by mixing in other emissive units functionalized with
(7) (a) Fukuda, M.; Sawada, K.; Yoshino, K. J. Polym. Sci., Part A: Polym.
Chem. 1993, 31, 2465. (b) Bernius, M. T.; Inbasekaran, M.; O’Brien, J.;
Wu, W. S. AdV. Mater. 2000, 12, 1737-1750. (c) Ranger, M.; Leclerc, M.
Macromolecules 1997, 30, 7686-7691.
(8) Liu, B.; Wang, S.; Bazan, G. C.; Mikhailovsky, A. J. Am. Chem. Soc. 2003,
125, 13306-13307.
(9) Jo, J.; Chi, C.; Ho¨ger, S.; Wegner, G.; Yoon, D. Y. Chem.-Eur. J. 2004,
10, 2681-2688.
(10) Lee, S. H.; Tsutsui, T. Thin Solid Films 2000, 363, 76-80.
(11) Ane´mian, R.; Mulatier, J.-C.; Andraud, C.; Ste´phan, O.; Vial, J.-C. Chem.
Commun. 2002, 1608-1609.
(12) (a) Geng, Y.; Trajkovska, A.; Katsis, D.; Ou, J. J.; Culligan, S. W.; Chen,
S. H. J. Am. Chem. Soc. 2002, 124, 8337-8347. (b) Katsis, D.; Geng, Y.
H.; Ou, J. J.; Culligan, S. W.; Trajkovska, A.; Chen, S. H.; Rothberg, L. J.
Chem. Mater. 2002, 14, 1332-1339. (c) Geng, Y.; Culligan, S. W.;
Trajkovska, A.; Wallace, J. U.; Chen, S. H. Chem. Mater. 2003, 15, 542-
549.
(13) (a) Ja¨ckel, F.; De Feyter, S.; Hofkens, J.; Ko¨hn, F.; De Schryver, F. C.;
Ego, C.; Grimsdale, A.; Mu¨llen, K. Chem. Phys. Lett. 2002, 362, 534-
540. (b) Ego, C.; Marsitzky, D.; Becker, S.; Zhang, J.; Grimsdale, A. C.;
Mu¨llen, K.; MacKenzie, J. D.; Silva, C.; Friend, R. H. J. Am. Chem. Soc.
2003, 125, 437-443. (c) Kong, X.; Jenekhe, S. A. Macromolecules 2004,
37, 8180-8183.
(1) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger,
A. J. Nature 1992, 357, 477-479.
(2) Maddux, T.; Li, W. J.; Yu, L. P. J. Am. Chem. Soc. 1997, 119, 844-845.
(3) Meier, H.; Stalmach, U.; Kolshorn, H. Acta Polym. 1997, 48, 379-384.
(4) Klaerner, G.; Miller, R. D. Macromolecules 1998, 31, 2007-2009.
(5) Folmer, B. J. B.; Sijbesma, R. P.; Versteegen, R. M.; van der Rijt, J. A. J.;
Meijer, E. W. AdV. Mater. 2000, 12, 874-878.
(14) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg,
J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Science 1997,
278, 1601-1604.
(6) El-ghayoury, A.; Schenning, A. P. H. J.; van Hal, P. A.; van Duren, J. K.
J.; Janssen, R. A. J.; Meijer, E. W. Angew. Chem., Int. Ed. 2001, 40, 3660-
3663.
(15) So¨ntjens, S. H. M.; Sijbesma, R. P.; van Genderen, M. H. P.; Meijer, E.
W. J. Am. Chem. Soc. 2000, 122, 7487-7493.
9
10.1021/ja052054k CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 11763-11768
11763