2
(3) was
0
N-acetyl-3-bromo-4-hydroxylphenylethamine
F.; Guido, T.; Hagopian, S.; Johnson-Wood, K.; Khan, K.; Lee,
M.; Leibowitz, P.; Lieberburg, I.; Little, S.; Masliah, E.;
McConlogue, L.; Montoya-Zavala, M.; Mucke, L.; Paganini, L.;
Penniman, E.; Power, M.; Schenk, D.; Seubert, P.; Snyder, B.;
Soriano, F.; Tan, H.; Vitale, J.; Wadsworth, S.; Wolozin, B.; Zhao,
J. Nature 1995, 373, 523.
isolated as brown amorphous powder. (+)-LRESIMS showed an
isotopic ion cluster at m/z 258/260 (1:1), indicating the presence of
one bromine atom in the molecule. The molecular formula of 3was
determined to be C10
H
12BrNO
79.9943 [M+Na] , calcd279.9940 for C10
and gHSQC NMR data of compound 3showed two exchangeable
protons (δ 9.94 s; 7.82, t, J = 5.6 Hz), three mutually coupled
aromatic protons (δ 7.28, d, J = 2.2 Hz, H-2; 6.98, dd, J = 2.2, 8.2
Hz, H-6; and 6.84, d, J = 8.2 Hz, H-5), two methylenes (δ 3.18, t, J
7.3 Hz; 2.56, t, J = 7.3 Hz), and a methyl group (δ 1.74 s). The
above data were very similar to those of
2
, on the basis of HRESIMS (m/z
+
79 1
2
2
H12 BrNO Na). The H,
2
3
4
.
.
.
Hardy, J.; Selkoe, D. J. Science 2002, 297, 353.
H
Kim, J.; Basak, J. M.; Holtzman, D. M. Neuron 2009, 63, 287.
Poirier, J.; Bertrand, P.; Kogan, S.; Gauthier, S.; Davignon, J.;
Bouthillier, D. The Lancet 1993, 342, 697.
H
H
=
H
5. Cramer, P. E.; Cirrito, J. R.; Wesson, D. W.; Lee, C. Y. D.; Karlo,
J. C.; Zinn, A. E.; Casali, B. T.; Restivo, J. L.; Goebel, W. D.;
James, M. J.; Brunden, K. R.; Wilson, D. A.; Landreth, G. E.
Science 2012, 335, 1503.
N-acetyl-3,5-dibromo-4-hydroxyl phenylethamine (4). The only
difference was that compound 3 had an 1,3,4-trisubstituted
benzene ring instead of a symmetrical 1,3,4,5-tetrasubstituted
benzene ring in 4. Hence,compound3 was assigned as
N-acetyl-3-bromo-4-hydroxylphenylethamine.
6
.
Fan, J.; Shimizu, Y.; Chan, J.; Wilkinson, A.; Ito, A.; Tontonoz, P.;
Dullaghan, E.; Galea, L. A. M.; Pfeifer, T.; Wellington, C. L. J.
Lipid Res.2013, 54, 3139-3150.
Ten
known
natural
products,
N-acetyl-3,5-dibromo-4-hydroxylphenylethamine
namely
(4),
7. Schoenfeld, R. C.; Conova, S.; Rittschof, D.; Ganem, B. Bioorg.
Med. Chem. Lett. 2002, 12, 823.
3
,5-dibromo-4-methoxyphenylacetic acid(5),comantherin (6),
bastadin 6 (7), bastadin 7 (8),bastadin 8 (9),bastadin 9
10),bastadin 16 (11),bastadin 18 (12),andbastadin 24 (13), were
also isolated from the marine sponge. Their structures were
identified by comparing their H and C NMR data with those
reported in the literature. Interesting,
,5-dibromo-4-methoxyphenylpyruvic acid (2) was the rare
example of natural occurring phenylpyruvic acid (enol)
derivatives. This is also the first report of the presence of bastadins
from the sponge Callyspongia sp.
8
.
Weller, D. D.; Stirchak, E. P.; Yokoyama, A. J. Org. Chem. 1984,
9, 2061.
9. Leeper, F. J.; Staunton, J. J. Chem. Soc., Perkin Trans. 1 1984,
919.
(
4
1
13
2
1
1
1
1
0. Kazlauskas, R.; Lidgard, R.; Murphy, P.; Wells, R.; Blount, J.
Aust. J. Chem. 1981, 34, 765.
3
1. Miao, S.; Andersen, R. J.; Allen, T. M. J. Nat. Prod. 1990, 53,
1441.
2. Park, S. K.; Jurek, J.; Carney, J. R.; Scheuer, P. J. J. Nat. Prod.
The ApoE modulatory activities of compounds 1-13 were
evaluated. 3,5-Dibromo-4-methoxyphenylpyruvic acid (2)was the
only active compound, increasingApoE secretion by one fold over
background at the concentration of 40 µM.
1994, 57, 407.
3. Jaspars, M.; Rali, T.; Laney, M.; Schatzman, R. C.; Diaz, M. C.;
Schmitz, F. J.; Pordesimo, E. O.; Crews, P. Tetrahedron 1994, 50,
7367.
In conclusion, thirteen compounds (1-13) were isolated from
the Australian marine sponge Callyspongia sp. Three compounds
1
1
4. Greve, H.; Kehraus, S.; Krick, A.; Kelter, G.; Maier, A.; Fiebig,
H.-H.; Wright, A. D.; König, G. M. J. Nat. Prod. 2008, 71, 309.
(
1-3) are new to science and 3,5-dibromo-4-methoxyphenyl-
5. Compound 1, isolated as brown amorphous powder; [α]
.008, CH OH); UV (CH OH) λmax (log ε) 282 (3.75), 211 (4.68)
nm; IR (KBr) νmax 3380, 2924, 2854, 1712, 1497, 1260, 1203
D
+3.63 (c
pyruvic acid (2) show weak ApoE modulation activities. It is the
first time that bastadins were isolated from the sponge
Callyspongia sp.
0
3
3
-
1 1
13
cm ; H and C NMR data see Table 1; HRESIMS m/z 628.8529
+
79
Acknowledgement
[
M+Na] (calcd for C19
6. Arabshahi, L.; Schmitz, F. J. J. Org. Chem. 1987, 52, 3584.
7. Compound 2, isolated as pale amorphous powder; UV (CH
max (log ε) 292 (3.54), 209 (4.39) nm; IR (KBr) νmax 3368, 2930,
3 2 6
H17 Br N O Na, 628.8532).
1
1
The authors thank H. Vu from Griffith University for
acquiring the HRESIMS measurement.This work was supported
by the Queensland Government Smart Futures NIRAP Program,
the Australian Research Council for NMR and MS equipment
3
OH)
λ
-
1
1
13
2582, 1764, 1706, 1267, 997 cm ; H and C NMR data see
79
-
Table 1; HRESIMS m/z 348.8716 [M-H] (calcd for C10
(
LE0668477 and LE0237908), in part by an operating grant from
H
7
Br
2
O
4
,
the Alzheimer’s Drug Discovery Foundation to CW, and
Innovation Funds from the Centre for Drug Research and
Development (Vancouver, Canada).
348.8711).
1
1
2
8. Hoshino, O.; Murakata, M.; Yamada, K. Bioorg. Med. Chem. Lett.
992, 2, 1561.
1
9. Tran, T. D.; Pham, N. B.; Fechner, G.; Hooper, J. N. A.; Quinn, R.
Supplementary data
J. J. Nat. Prod. 2013, 76, 516.
1
Supplementary data ( H, gCOSY, gHSQC, gHMBC NMR spectra
3
0. Compound 3, isolated as pale amorphous powder; UV (CH OH)
for
compounds
1-3,general
experimental
procedures,
λ
max (log ε) 283 (3.34), 210 (4.07) nm; IR (KBr) νmax 3274, 2927,
spongecollection and identification, extraction and isolation
procedures, Preparation of D-and L-3-bromotyrosine, ApoE
modulation activity assay) associated with this article can be
found, in the online version, at
-1
647, 1508, 1288, 1197 cm ; H and C NMR data see Table 1;
1
13
1
+
HRESIMS m/z 279.9943 [M+Na] (calcd for C10
79
2
H12 BrNO Na,
279.9940).
References and notes
1
.
Games, D.; Adams, D.; Alessandrini, R.; Barbour, R.; Borthelette,
P.; Blackwell, C.; Carr, T.; Clemens, J.; Donaldson, T.; Gillespie,