4
O
O
N
N
SEt
Pd(0)
2a
1a
Regeneration of catalyst
(1) Oxidative
addition
(3) Reductive
elimination
L
(2) Intramolecular
C-H activation
L
Pd
L
O
N
N
O
Pd
S
L
Et
CuSEt + HTC
CuTC
II
I
In summary, we have developed a palladium-catalyzed intramolecular C-2 selective acylation of indoles with thioester. A range of
functional groups are tolerated in this reaction. It provides a direct and effective method for the synthesis of indole fused indolone
scaffolds, which play an important role in bioactive molecules.
Acknowledgments
We gratefully acknowledge Shanghai Institute of Materia Medica, Chinese Academy of Sciences, NSFC (21772211), Youth
Innovation Promotion Association CAS (NO. 2014229 and 2018293), Institutes for Drug Discovery and Development, Chinese
Academy of Sciences (NO.CASIMM0120163006), Science and Technology Commission of Shanghai Municipality (17JC1405000),
Program of Shanghai Academic Research Leader (19XD1424600), National Science & Technology Major Project “Key New Drug
Creation and Manufacturing Program”, China (2018ZX09711002-006), and the State Key Laboratory of Natural and Biomimetic Drugs
for financial support.
References and notes
[1] (a) H. Prokopcová, C.O. Kappe, Angew. Chem. Int. Ed. 48 (2009), 2276-2286;
(b) H. Cheng, H. Chen, Y. Liu, Q. Zhou Asian J. Org. Chem. 7(2018) 490-508;
(c) V. Hirschbeck, P.H. Gehrtz, I. Fleischer Chem. Eur. J. 24 (2018) 7092-7107.
[2] (a) H. Tokuyama, S. Yokoshima, T. Yamashita, T. Fukuyama, Tetrahedron Lett. 39 (1998) 3189-3192.
(b) H. Tokuyama, S. Yokoshima, T. Yamashita, S.C. Lin, L. Li, T. Fukuyama, J. Braz. Chem. Soc. 9 (1998) 381-387;
(c) R. Oost, A. Misale, N. Maulide, Angew. Chem. Int. Ed. 55 (2016) 4587-4590.
[3] (a) L.S. Liebeskind, J. Srogl, J. Am. Chem. Soc. 122 (2000) 11260–11261.
(b) D. G. Musaev, L.S. Liebeskind, Organometallics (28) 2009 4639–4642.
(c) M. Wang, Z. Dai, X, Jiang Nat. Commun. DOI: https://doi.org/10. 1038/s41467-019-10651-w.
[4] H. Li, H. Yang, L.S. Liebeskind, Org. Lett. 10 (2008) 4375–4378.
[5] V.P. Mehta, A. Sharma, E. Van der Eycken, Adv. Synth. Catal. 350 (2008) 2174–2178.
[6] B.W. Fausett, L.S. Liebeskind, J. Org. Chem. 70 (2005) 4851–4853.
[7] (a) A.C. Wotal, D.J. Weix, Org. Lett., 14 (2012) 1476-1479;
(b) J. Wang, B.P. Cary, P.D. Beyer, S.H. Gellman, D.J. Weix, Angew. Chem. Int. Ed. DOI: 10.1002/anie.201906000
[8] (a) W.L. Thomas, M.S. Sanford Chem. Rev. 110 (2010) 1147–1169;
(b) S. Rej, N. Chatani Angew. Chem. Int. Ed. 58 (2019) 8304–8329;
(c) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 52 (2013) 11726-117430;
(d) X. Chen, K.M. Engle, D.H. Wang, J.Q. Yu, Angew. Chem., Int. Ed. 48 (2009) 5094−5115;
(e) K.M. Engle, T.S. Mei, M. Wasa, J.Q. Yu, Acc. Chem. Res. 45 (2012) 788−802.
[9] C. Pan, X. Jia, J. Cheng Synthesis 44 (2012) 677–685.
[10] F. Penteado, E.F. Lopes, D. Alves, G. Perin, R.G. Jacob, E.J. Lenardão Chem. Rev. 119 (2019) 7113−7278.
[11] Y. Huang, R. Zhu, K. Zhao, Z. Gu, Angew. Chem. Int. Ed. 54 (2015) 12669-12672.
[12] (a) P. Zhou, Y. Ye, C. Liu, L. Zhao, J. Hou, D. Chen, Q. Tang, A. Wang, J. Zhang, Q. Huang, P. Xu, Y. Liang ACS Catal. 5 (2015) 4927-4931;
(b) P. Mamone, G. Danoun, L.J. Gooβen Angew. Chem. Int. Ed. 52 (2013) 6704-6708.
[13] F. Sun, M.Li, C. He, B. Wang, B. Li, X. Sui, Z. Gu, J. Am. Chem. Soc. 138 (2016) 7456-7459.
[14] C.L. Joe, A.G. Doyle, Angew. Chem. Int. Ed. 55 (2016) 4040-4043.
[15] (a) M.Z. Zhang, Q. Chen, G.F. Yang, Eur. J. Med. Chem. 89 (2015) 421−441;
(b) A.J. Kochanowska-Karamyan, M.T. Hamann, Chem. Rev. 110 (2010) 4489−4497;
(c) G.R. Humphrey, J.T. Kuethe, Chem. Rev. 106 (2006) 2875-2911;
(d) H.F. Motiwala, R.H. Vekariya, J. Aubé, Org. Lett. 17 (2015) 5484-5487;
(e) X. Wang, Z. Li, S. Cao, Adv. Synth. Catal. 358 (2016) 2059-2065.
(f) C. Shao, Z. Wu, X. Ji, B. Zhou, Y. Zhang, Chem. Commun. 53 (2017) 10429-10432.