Organic Letters
Letter
for this reaction being only 0.80 kcal/mol. Hence, the formation
of D from B requires only 9.56 kcal/mol and is more favorable in
comparison to the formation of E from B (24.59 kcal/mol). D
can yield the diaryl product F by releasing 10.39 kcal/mol, with
an energy barrier of ∼14.40 kcal/mol. Overall, the diaryl product
formation follows a low energy pathway in the presence of
TEMPO. Hence, it can be concluded that the radical character of
TEMPO is facilitating the diaryl product formation through this
reaction (B + ArB(OH)2 + TEMPO →F + AcOB(OH)2 +
TEMPO) and is marginally exergonic by 1.26 kcal/mol. Figure 2
shows the 3D structures of the transition states TS (A → B) and
TS (D → F).
REFERENCES
■
(1) (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev.
1994, 94, 2483. (b) Cardona, F.; Goti, A. Nat. Chem. 2009, 1, 269.
(c) Kalyani, D.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 2150.
(d) Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. J. Am. Chem. Soc. 2010, 132,
1474. (e) Melhado, A. D.; Brenzovich, W. E.; Lackner, A. D.; Toste, F. D.
J. Am. Chem. Soc. 2010, 132, 8885. (f) Urkalan, K. B.; Sigman, M. S.
Angew. Chem., Int. Ed. 2009, 48, 3146.
(2) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem.
Rev. 2007, 107, 5318.
(3) (a) Urkalan, K. B.; Sigman, M. S. Angew. Chem., Int. Ed. 2009, 48,
3146. (b) Liu, Y.; Yao, B.; Deng, C. L.; Tang, R. Y.; Zhang, X. G.; Li, H.
Org. Lett. 2011, 13, 1126. (c) Werner, E. W.; Urkalan, K. B.; Sigman, M.
S. Org. Lett. 2010, 12, 2848. (d) Saini, V.; Liao, L.; Wang, Q.; Jana, R.;
Sigman, M. S. Org. Lett. 2013, 15, 5008.
(4) (a) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111,
2981. (b) DeLuca, R. J.; Stokes, B. J.; Sigman, M. S. Pure Appl. Chem.
2014, 86, 395 and references cited therein. (c) Shibata, K.; Satoh, T.;
Miura, M. Org. Lett. 2005, 7, 1781. (d) Liao, L.; Jana, R.; Urkalan, K. B.;
Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 5784. (e) Rodríguez, A.;
̀ ́
Albert, J.; Ariza, X.; Garcia, J.; Granell, J.; Farras, J.; La Mela, A.; Nicolas,
E. J. Org. Chem. 2014, 79, 9578. (f) Trejos, A.; Fardost, A.; Yahiaoui, S.;
Larhed, M. Chem. Commun. 2009, 7587. (g) Trejos, A.; Odell, L. R.;
Larhed, M. ChemistryOpen 2012, 1, 49. (h) Yahiaoui, S.; Fardost, A.;
Trejos, A.; Larhed, M. J. Org. Chem. 2011, 76, 2433.
(5) (a) Nicolaou, K. C.; Mitchell, H. J. Angew. Chem., Int. Ed. 2001, 40,
1576. (b) Isobe, M.; Nishizawa, R.; Hosokawa, S.; Nishikawa, T. Chem.
Commun. 1998, 2665. (c) Ichikawa, Y.; Tsuboi, K.; Jiang, Y.; Naganawa,
A.; Isobe, M. Tetrahedron Lett. 1995, 36, 7101. (d) Jiang, Y.; Isobe, M.
Tetrahedron 1996, 52, 2877. (e) Tsuboi, K.; Ichikawa, Y.; Jiang, Y.;
Naganawa, A.; Isobe, M. Tetrahedron 1997, 53, 5123. (f) Isobe, M.;
Yenjai, C.; Tanaka, S. Synlett 1994, 1994, 916. (e) Yenjai, C.; Isobe, M.
Tetrahedron 1998, 54, 2509. (f) Rosenthal, A.; Abson, D. J. J. Am. Chem.
Soc. 1964, 86, 5356.
(6) (a) Kusunuru, A. K.; Tatina, M.; Yousuf, S. K.; Mukherjee, D.
Chem. Commun. 2013, 49, 10154. (b) Tatina, M.; Kusunuru, A. K.;
Yousuf, S. K.; Mukherjee, D. Chem. Commun. 2013, 49, 11409.
(c) Lambu, M. R.; Hussain, A.; Sharma, D. K.; Yousuf, S. K.; Singh, B.;
Tripathi, A. K.; Mukherjee, D. RSC Adv. 2014, 4, 11023. (d) Mukherjee,
D.; Sarkar, S. K.; Chowdhury, U. S.; Taneja, S. C. Tetrahedron Lett. 2007,
48, 663. (e) Kusunuru, A. K.; Yousuf, S. K.; Tatina, M.; Mukherjee, D.
Eur. J. Org. Chem. 2015, 2015, 459.
(7) (a) Singh, P.; Mittal, A.; Kaur, S.; Kumar, S. Bioorg. Med. Chem.
2006, 14, 7910. (b) Singh, P.; Mittal, A.; Kaur, S.; Kumar, S. Eur. J. Med.
Chem. 2008, 43, 2792. (c) Singh, P.; Mittal, A.; Kumar, S. Bioorg. Med.
Chem. 2007, 15, 3990.
(8) (a) Ramnauth, J.; Poulin, O.; Bratovanov, S. S.; Rakhit, S.;
Maddaford, S. P. Org. Lett. 2001, 3, 2571. (b) Xiong, D. C.; Zhang, L. H.;
Ye, X. S. Org. Lett. 2009, 11, 1709.
(9) (a) Bai, Y.; Kim, L. M. H.; Liao, H.; Liu, X. W. J. Org. Chem. 2013,
78, 8821. and references cited therein. (b) Li, H. H.; Ye, X. S. Org.
Biomol. Chem. 2009, 7, 3855. (c) Xiang, S.; Cai, S.; Zeng, J.; Liu, X.-W.
Org. Lett. 2011, 13, 4608.
(10) In NOESY of compound 19a we observed cross peaks between
H3(δ 3.46)/H5(δ 3.77) and no cross peak between H2(δ 3.1)/H4(δ
5.61), which confirms the stereochemistry of aryl groups as cis(β−β) at
C2-C3 (Figure 3).
(11) In the NOESY spectrum of compound 17a, observed correlation
between H1/H6 and H2/H4 reveals that H-1, H-2, H-4, H-6 are
cofacial, which confirms the stereochemistry of aryl groups as cis(β−β)
at C1-C2.
Figure 2. 3D structures of the transition states (i) (A → B)−C1-
arylation; (ii) (D → F)-C2-arylation.
From the complex B, three pathways appear likely: (i)
formation of G, (ii) formation of E (both in the absence of
TEMPO), and (iii) formation of C (in the presence of TEMPO).
Formation of G is much more favorable in the absence of
TEMPO; hence, diaryl product via E is not noticed. Only in the
presence of TEMPO can the formation of C−F be noticed. The
overall energy barrier for the formation of F from B in the
absence of TEMPO is 35 kcal/mol (via E). The same in the
presence of TEMPO is 23.5 kcal/mol.
In conclusion, we have established a highly diastereoselective
diarylation of glycals with arylboronic acids wherein a wide
vareity of glycals and arylboronic acids can participate. The
reaction is basically a type of Heck−Suzuki arylation. Here, the
oxidizing agent TEMPO plays a key role in blocking syn-and anti-
elimination. The diarylation can take place in the presence of the
radical oxidative agent TEMPO.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, 1H, 13C, and 2D- NMR spectra,
Cartesian coordinates, and characterization of all compounds.
The Supporting Information is available free of charge on the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are thankful to CSIR-IIIM (MLP4015, BSC0108) for
generous funding. A.K. and T.M.B. thank CSIR, New Delhi, for a
senior research fellowship. IIIM Publication No.: IIIM/1816/
2015.
D
Org. Lett. XXXX, XXX, XXX−XXX