Probe Behavior in BMIMPF6 + Ethanol + Water Solutions
J. Phys. Chem. B, Vol. 107, No. 48, 2003 13539
(9) Liu, F. C.; Abrams, M. C.; Baker, R. T.; Tumas, W. Chem.
Commun. 2002, 433.
(10) Wheeler, C.; West, K. N.; Liotta, C. L.; Eckert, C. A. Chem.
Commun. 2001, 887.
(11) Dzyuba, S. V.; Bartsch, R. A. Chem. Commun. 2001, 1466.
(12) Sheldon, R. Chem. Commun. 2001, 2399.
(13) Gordon, C. M. Appl. Catal. A: Gen. 2001, 222, 101.
(14) Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3773.
(15) Anthony, J. L.; Maginn, E. J.; Brennecke, J. F. J. Phys. Chem. B
2002, 106, 7315.
(16) Noda, A.; Hayamizu, K.; Watanabe, M. J. Phys. Chem. B 2001,
105, 4603.
deviation from additivity, vide infra, Figure 5) may be attributed
to the corresponding changes in the HBD acidity as well as the
dipolarity/polarizability of the system as the composition of the
ternary mixture is varied. It appears that the Kamlet-Taft
treatment is able to explain, in part, the experimentally observed
solvatochromic probe behavior (i.e., ET(30) and pyrene II/IIII)
for ternary BMIMPF6 + ethanol + water. A major part of the
current efforts in our group is focused on identifying and/or
developing preferential solvation models that may conform to
our experimental solvatochromic probe data within RTIL-based
multicomponent systems.
(17) Grodkowski, J.; Neta, P. J. Phys. Chem. B 2002, 106, 9030.
(18) Hyun, B. R.; Dzyuba, S. V.; Bartsch, R. A.; Quitevis, E. L. J. Phys.
Chem. A 2002, 106, 7579.
(19) Najdanovic-Visak, V.; Esperanca, J. M. S. S.; Rebelo, L. P. N.; da
Ponte, M. N.; Guedes, H. J. R.; Seddon, K. R.; Szydlowski, J. Phys. Chem.
Chem. Phys. 2002, 4, 1701.
(20) Swatloski, R. P.; Visser, A. E.; Reichert, W. M.; Broker, G. A.;
Farina, L. M.; Holbrey, J. D.; Rogers, R. D. Chem. Commun. 2001, 2070.
(21) Swatloski, R. P.; Visser, A. E.; Reichert, W. M.; Broker, G. A.;
Farina, L. M.; Holbrey, J. D.; Rogers, R. D. Green Chem. 2002, 4, 81.
(22) Seddon, K. R.; Stark, A.; Torres, M. J. Pure Appl. Chem. 2000,
72, 2275.
(23) (a) Fletcher, K. A.; Pandey, S. Appl. Spectrosc. 2002, 56, 266. (b)
Fletcher, K. A.; Pandey, S. Appl. Spectrosc. 2002, 56, 1498.
(24) Aki, S. N. V. K.; Brennecke, J. F.; Samanta, A. Chem. Commun.
2001, 413.
Conclusion
The deviations between experimentally observed and pre-
dicted additive behavior of the probes could arise not only from
specific solute-solvent interactions but also due the altered
properties of the solution due to any solvent-solvent interac-
tions. For most cases, the dipolarity of the ternary solution
appears to be greater than that predicted from the simple
solvation model used in the current study. Presumably, interac-
tions between pyrene and the imidazolium cation and/or
-
interactions between water molecules and the PF6 anion
(25) Muldoon, M. J.; Gordon, C. M.; Dunkin, I. R. J. Chem. Soc., Perkin
account for these observations. Model predictions indicate 1,3-
bis(1-pyrenyl)propane may be preferentially solvated by the
lower-viscosity components in solution; however, these observa-
tions seem to result from a reduction in the bulk viscosity of
BMIMPF6 due to the presence of low-viscosity cosolvents.
1-Pyrenecarboxaldehyde appears to be preferentially solvated
by ethanol; however, for XBMIMPF6 < ∼0.35, the observed
response of 1-pyrenecarboxaldehyde remains constant. As the
composition of BMIMPF6 increases past 0.35 mole fraction,
the observed response of 1-pyrenecarboxaldehyde is lower than
that obtained from additivity, indicating the static dielectric
constant of the cybotactic region surrounding this probe in the
ternary solvent system is lower than predicted. On the basis of
the response of Reichardt’s betaine dye, synergistic effects are
again observed upon the addition of aqueous ethanol to
BMIMPF6. The dipolarity/polarizability and hydrogen-bond
donating ability of the ternary solution first increase and then
gradually decrease as the composition of BMIMPF6 increases.
The hydrogen-bond accepting ability decreases with increasing
BMIMPF6. The results of the current study indicate that one is
able to significantly alter the physicochemical properties of
BMIMPF6 by simply adding appropriate amounts of ethanol
and water.
Trans. 2 2001, 433.
(26) Carmichael, A. J.; Seddon, K. R. J. Phys. Org. Chem. 2000, 13,
591.
(27) (a) Marcus, Y. Chem. Soc. ReV. 1993, 409. (b) Reichardt, C.
SolVents and SolVent Effects in Organic Chemistry, 2nd, revised and enlarged
ed., VCH: New York, 1990; p 34 footnote.
(28) Roses, M.; Rafols, C.; Ortega, J.; Bosch, E. J. Chem. Soc., Perkins
Trans 2 1995, 1607.
(29) Fletcher, K. A.; Storey, I. K.; Hendricks, A. E.; Pandey, S.; Pandey,
S. Green Chem. 2001, 3, 210.
(30) Baker, S. N.; Baker, G. A.; Kane, M. A.; Bright, F. V. J. Phys.
Chem. B 2001, 105, 9663.
(31) Baker, S. N.; Baker, G. A.; Bright, F. V. Green Chem. 2002, 4,
165.
(32) Werner, J. H.; Baker, S. N.; Baker, G. A. Analyst 2003, 128, 786.
(33) Waris, R.; Acree, W. E., Jr.; Street, K. W., Jr. Analyst 1988, 113,
1465.
(34) Dong, D. C.; Winnik, M. A. Can. J. Chem. 1984, 62, 2560.
(35) Karpovich, D. S.; Blanchard, G. J. J. Phys. Chem. 1995, 99, 3951.
(36) Marcus, Y. J. Chem. Soc., Perkins Trans 2 1994, 1015.
(37) Chatterjee, P.; Bagchi, S. J. Chem. Soc., Faraday Trans. 1991, 87,
537.
(38) Bosch, E.; Roses, M. J. Chem. Soc., Faraday Trans. 1992, 88, 3541.
(39) Phillips, D. J.; Brennecke, J. F. Ind. Eng. Chem. Res. 1993, 32,
943.
(40) Acree, Jr., W. E.; Wilkins, D. C.; Tucker, S. A.; Griffin, J. M.;
Powell, J. R. J. Phys. Chem. 1994, 98, 2537 and references therein.
(41) Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T. Phys.
Chem. Chem. Phys. 2001, 3, 5192.
(42) Snare, M. J.; Thistlethwaite, P. J.; Ghiggino, K. P. J. Am. Chem.
Soc. 1983, 105, 3328.
Acknowledgment. This work was supported in part by a
Sandia-University Research Program (SURP) grant. We thank
Rebecca A. Redden, Ashley E. Hendricks, and Isaiah K. Storey
for their help during the experiments. We also appreciate
suggestions and efforts from one of the reviewers involved
during the peer-review process of this manuscript.
(43) Zachariasse, K. A. Chem. Phys. Lett. 1978, 57, 429.
(44) Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Inter-
science: New York, 1970.
(45) Suarez, P. A. Z.; Einloft, S.; Dullius, J. E. L.; de Souza, R. F.;
Dupont, J. J. Chim. Phys. Phys.-Chim. Biol. 1998, 95, 1626.
(46) Kalyanasundaram, K.; Thomas, J. K. J. Phys. Chem. 1977, 81, 2176.
(47) Bredereck, K.; Forster, Th.; Oenstein, H. G. Luminescence of
Inorganic and Organic Materials; Kallman, H. P., Spruch, G. M., Eds;
Wiley: New York, 1960.
(48) Reichardt, C. Chem. ReV. 1994, 94, 2319 and references therein.
(49) Reichardt, C. SolVents and SolVent Effects in Organic Chemistry;
VCH: Weinheim, 1988.
(50) Kamlet, M. J.; Abboud, J. L.; Taft, R. W. J. Am. Chem. Soc. 1977,
99, 6027.
(51) (a) Tada, E. B.; Novaki, L. P.; El Seoud, O. A. J. Phys. Org. Chem.
2000, 13, 679. (b) Wu, Y. G.; Tabata, M.; Takamuku, T. J. Soln. Chem.
2002, 31, 381. (c) Marcus, Y. J. Chem. Soc., Perkins Trans. 2 1994, 1751.
(52) Taft, R. W.; Kamlet, M. J. J. Am. Chem. Soc. 1976, 98, 2886.
(53) Kamlet M. J.; Taft, R. W. J. Am. Chem. Soc. 1976, 98, 377.
(54) Kamlet, M. J.; Abboud, J. L.; Abraham, M. H.; Taft, R. W. J. Org.
Chem. 1983, 48, 2877.
References and Notes
(1) Seddon, K. R. J. Chem. Technol. Biotechnol. 1997, 68, 351.
(2) Freemantle, M.Chem. Eng. News 1998, 76, 32.
(3) Freemantle, M. Chem. Eng. News 2000, 78, 37.
(4) Welton, T. Chem. ReV. 1999, 99, 2071.
(5) Carmichael, A. J.; Haddleton, D. M.; Bon, S. A. F.; Seddon, K. R.
Chem. Commun. 2000, 1237.
(6) Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Griffin, S. T.;
Rogers, R. D. Ind. Eng. Chem. Res. 2000, 39, 3596.
(7) Fletcher, K. A.; Pandey, S.; Storey, I. K.; Hendricks, A. E.; Pandey,
S. Anal. Chim. Acta 2002, 453, 89.
(8) Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff,
S.; Wierzbicki, A.; Davis, J. H.; Rogers, R. D. Chem. Commun. 2001, 135.