P. Benzi, L. Operti, R. Rabezzana
FULL PAPER
Chem. 1996, 509, 151. – [3d] G. Cetini, L. Operti, R. Rabezzana,
G. A. Vaglio, P. Volpe, J. Organomet. Chem. 1996, 519, 169. –
reactions with water background, the manifold and the lines for
introduction of reagent gases and helium were frequently baked-
out.
[3e]
P. Benzi, L. Operti, R. Rabezzana, M. Splendore, G. A.
Vaglio, Int. J. Mass Spectrom. Ion Processes 1996, 152, 61. –
[3f]
The scan modes used to isolate selected ion species or ranges of
ions for the determination of reaction mechanisms and rate con-
stants, as well as the procedures for calculations, were previously
described in detail.[3,21,25] Ionic species that were selectively isolated
from silane contained the 28Si isotope, whereas those isolated from
germane contained the 70Ge (Geϩ, GeHϩ) or 76Ge (GeH2ϩ, GeH3ϩ)
isotope. Selection of ions at a specific m/z value was performed
by using dc voltages and by resonance ejection, as in previous stud-
ies.[25] The latter method, applying rf voltages only, is expected to
cause a lower excitation of the selected ions with respect to the
method in which a dc voltage is used. The rate constants obtained
with the two different methods were very similar and this behaviour
is consistent with the hypothesis that ions are thermalized by unre-
active collisions with the buffer gas. The single exponential decays
of the abundance of the reacting ions observed in the kinetic experi-
ments further confirm this hypothesis.
Formation of ions was obtained with an electron beam at about
35 eV for ionisation times in the range 1–20 ms. A reaction time
suitable to maximise the abundance of ions to be stored was applied
after the ionisation event. Isolation of the selected ions, their reac-
tions with neutrals present in the trap for convenient reaction times
(50 ms for rate constants calculation and up to 2 s for mechanisms
determination) and acquisition were the successive steps.
In the silane/allene mixture, where Si is isobaric with C2H4, some
experiments were performed by introducing one reagent gas via a
pulsed valve in order to determine the neutral species involved in
the ion/molecule reaction under examination and, as a con-
sequence, the composition of the product ion. A General Valve
Corporation’s Iota One pulse valve was used,[26] and the experi-
mental procedures have been already described.[4] Briefly, the intro-
duction into the ion trap of one of the reactants through a pulsed
valve allows us to react selected ions with only the other gas which
is continuously leaked into the trap. The pressure of the gas to be
pulsed was set behind the valve to about 1 ϫ 10–6 Torr, the valve
opening time was 0.1 ms and the time required for the pressure of
the pulsed gas to decrease to zero was about 1.5 s.
P. Antoniotti, L. Operti, R. Rabezzana, G. A. Vaglio, Int.
J. Mass Spectrom. 1999, 182/183, 63.
[4] [4a]
P. Benzi, L. Operti, G. A. Vaglio, P. Volpe, M. Speranza,
R. Gabrielli, Int. J. Mass Spectrom. Ion Processes 1990, 100,
[4b]
647. –
L. Operti, M. Splendore, G. A. Vaglio, P. Volpe, M.
Speranza, G. Occhiucci, J. Organomet. Chem. 1992, 433, 35.
P. Antoniotti, L. Operti, R. Rabezzana, G. A. Vaglio, P. Volpe,
Int. J. Mass Spectrom. 1999, 190/191, 243.
P. Antoniotti, C. Canepa, L. Operti, R. Rabezzana, G.
Tonachini, G. A. Vaglio, J. Organomet. Chem., 1999, 589, 150.
P. Antoniotti, C. Canepa, L. Operti, R. Rabezzana, G.
Tonachini, G. A. Vaglio, J. Phys. Chem. A 1999, 103, 10945.
M. T. Bowers, Gas Phase lon Chemistry, Academic Press, New
York, 1979.
[5]
[6]
[7]
[8]
[9]
S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R.
D. Levin, W. G. Mallard, J. Phys. Chem. ref. Data Suppl. 1
1988, 17.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
B. Ruscic, M. Schwarz, J. Berkowitz, J. Chem. Phys. 1990, 92,
1865.
R. Bakhtiar, C. M. Holznagel, D. B. Jacobson, J. Phys. Chem.
1993, 97, 12710.
B. H. Boo, P. B. Armentrout, J. Am. Chem. Soc. 1991, 113,
6401.
B. H. Boo, P. B. Armentrout, J. Am. Chem. Soc. 1987, 109,
3549.
S. Wlodek, A. Fox, D. K. Bohme, J. Am. Chem. Soc. 1991,
113, 4461.
B. H. Boo, J. L. Elkind, P. B. Armentrout, J. Am. Chem. Soc.
1990, 112, 2083.
B. L. Kickel, E. R. Fisher, P. B. Armentrout, J. Phys. Chem.
1992, 96, 2603.
S. K. Shin, R. R. Corderman, J. L. Beauchamp, Int. J. Mass
Spectrom. Ion Processes 1990, 101, 257.
[18] [18a]
J. J. Myher, A. G. Harrison, J. Phys. Chem. 1968, 72,
1905. – [18b] M. T. Bowers, D. D. Elleman, R. M. O’Malley, K.
[18c]
R. Jennings, J. Phys. Chem. 1970, 74, 2583. –
A. Nato, M.
Niwa, K. Honma, I. Tanaka, Int. J. Mass Spectrom. Ion Phys.
[18d]
1980, 34, 287. –
C. Lifshitz, Y. Gleitman, S. Gefen, U.
Shainock, I. Dotan, Int. J. Mass Spectrom. Ion Phys. 1981, 40,
[18e]
1. –
C. Lifshitz, Y. Gleitman, Int. J. Mass Spectrom. Ion
Phys. 1981, 40, 17. – [18f] V. G. Anicich, G. A. Blake, J. K. Kim,
M. J. McEwan, W. T. Huntress Jr. J. Phys. Chem. 1984, 88,
[18g]
4608. –
Ion Processes 1984, 59, 49.
D. Carrier, J. A. Herman, Int. J. Mass Spectrom.
[19]
[20]
K. J. Miller, J. Am. Chem. Soc. 1990, 912, 8533.
E. R. Lippincott, J. M. Stutman, J. Phys. Chem. 1964, 68, 2926.
[21] [21a]
P. Benzi, L. Operti, G. A. Vaglio, P. Volpe, M. Speranza,
Acknowledgments
Authors wish to thank MURST and Universita di Torino for finan-
cial support to this research.
R. Gabrielli, J. Organomet. Chem. 1988, 354, 39. – [21b] L. Oper-
ti, M. Splendore, G. A. Vaglio, A. M. Franklin, J. F. J. Todd,
Int. J. Mass Spectrom. Ion Processes 1994, 136, 25.
P. Benzi, M. Castiglioni, P. Volpe, L. Battezzati, M. Venturi,
Polyhedron 1988, 7, 597.
`
[22]
[23]
[1]
M. Decouzon, J.-F. Gal, P.-C. Maria, A. S. Tchinianga, per-
sonal communication.
J. G. Ekerdt, Y.-M. Sun, A. Szabo, G. J. Szulczewski, J. M.
White, Chem. Rev. 1996, 96, 1499.
[24]
[25]
[2]
J. E. Bartmess, R. M. Georgiadis, Vacuum 1983, 33, 149.
P. Antoniotti, L. Operti, R. Rabezzana, M. Splendore, G.
Tonachini, G. A. Vaglio, J. Chem. Phys. 1997, 107, 1491.
T. J. Carlin, B. S. Freiser, Anal. Chem. 1983, 55, 571.
Received July 30, 1999
P. Hess, Electron. Mat. Chem. 1996, 127, 169.
[3] [3a]
J.-F. Gal, R. Grover, P.-C. Maria, L. Operti, R. Rabezzana,
[3b]
G. A. Vaglio, P. Volpe, J. Phys. Chem. 1994, 98, 11978. –
P.
[26]
Antoniotti, L. Operti, R. Rabezzana, G. A. Vaglio, J.-F. Gal,
[3c]
R. Grover, P.-C. Maria, J. Phys. Chem. 1996, 100, 155. –
L.
Operti, R. Rabezzana, G. A. Vaglio, P. Volpe, J. Organomet.
[I99284]
512
Eur. J. Inorg. Chem. 2000, 505Ϫ512