Please do not adjust margins
RSC Advances
DOI: 10.1039/C6RA19895C
ARTICLE
Journal Name
1.8
1.2
0.6
0.0
a
optoelectronics material to modulate efficient optoelectronics
devices by tuning different aggregation state diblock copolymer..
EDP-P3HT-SH
GDP-P3HT-SH
ACKNOWLEDGMENTS
The authors thank A/Prof. D. Jin and A/Prof. H. Chen (Shanghai
University, China) for support on the measurement of TEM and UV.
This work was supported by the National Natural Science
Foundation of China (Grant no. 51203088).
LDP-P3HT-SH
2.0 2.5
0.5
1.0
1.5
Thickness (µm)
Supporting Information Available: 1 H NMR spectra of
the synthetic products.
5
.4
b
EDP-P3HT-S-AuNPs
4
3
2
1
0
.5
.6
.7
.8
.9
Notes and references
GDP-P3HT-S-AuNPs
School of Materials Science & Engineering, Shanghai University,
Shanghai 200444, China.
Email: liyunbo@shu.edu.cn
LDP-P3HT-S-AuNPs
0
.0
0.5
1.0
1.5
1. (a) Arias, A. C.; Endicott, F.; Street, R. A. Adv. Mater. 2006, 18,
Volume of AuNPs (mL)
2
900-2904; (b) Newbloom, G. M.; Weigandt, K. M.; Pozzo, D. C.
Macromolecules 2012, 45, 3452-3462; (c) Martinez, L.; Higuchi,
S.; MacLachlan, A.; Stavrinadis, A.; Miller, N.; Diedenhofen, S.
L.; Bernechea, M.; Sweetnam, S.; Nelson, J.; Haque, S.
Nanoscale 2014, 6, 10018-10026; (d) Wu, P. T.; Ren, G.; Kim, F.
S.; Li, C.; Mezzenga, R.; Jenekhe, S. A. J. Polym. Sci., Part A:
Polym. Chem. 2010, 48, 614-626; (e) Cui, J.; Martínez-Tong, D.
E.; Sanz, A.; Ezquerra, T. A.; Rebollar, E.; Nogales, A.
Macromolecules 2016, 49, 2709-2717.
Figure 8. Conductivity of DP-P3HT-SH films at different
film thickness (a) and DP-P3HT-S-AuNPs hybrid
particles films with different volume of AuNPs (b).
CONCLUSION
2
.
(a) Segalman, R. A.; McCulloch, B.; Kirmayer, S.; Urban, J. J.
Macromolecules 2009, 42, 9205-9216; (b) Hammer, B. A. G.;
Bokel, F. A.; Hayward, R. C.; Emrick, T. Chem. Mater. 2011, 23,
4250-4256; (c) Kim, D. H.; Park, Y. D.; Jang, Y.; Yang, H.; Kim, Y.
H.; Han, J. I.; Moon, D. G.; Park, S.; Chang, T.; Chang, C. Adv.
Funct. Mater. 2005, 15, 77-82; (d) Rajaram, S.; Armstrong, P. B.;
Kim, B. J.; Fréchet, J. M. Chem. Mater. 2009, 21, 1775-1777; (e)
Sivula, K.; Luscombe, C. K.; Thompson, B. C.; Fréchet, J. M. J.
Amer. Chem. Soc. 2006, 128, 13988-13989.
DP-P3HT-SH had been synthesized by the simple solution and
different aggregation states DP-P3HT-SH and their respective
composites of DP-P3HT-S-AuNPs hybrid nanostructures had been
prepared. The gold nanoparticles were attached on the surface of
DP-P3HT-SH polymer. The DP-P3HT-S-AuNPs composites exhibited
enhanced and wide range of absorption compared to the same
aggregate state of DP-P3HT-SH. However, the photoluminescence
intensity of DP-P3HT-S-AuNPs was lower than that of DP-P3HT-SH
due to the addition of gold nanoparticles. The GDP-P3HT-S-AuNPs
had the most amount of PL quenching about 23%; while the LDP-
P3HT-S-AuNPs had the least amount of PL quenching about 11%.
The charge transfer between GDP-P3HT-SH and AuNPs was the
most efficient among the films made with three aggregation states,
whereas, the LDP-P3HT-SH had the least charge transfer efficient.
3
4
5
.
.
.
Osaka, I.; McCullough, R. D. Acc. Chem. Res. 2008, 41, 1202-
1
214.
Yu, X.; Xiao, K.; Chen, J.; Lavrik, N. V.; Hong, K.; Sumpter, B. G.;
Geohegan, D. B. ACS nano 2011, 5, 3559-3567.
Hammer, B. A.; Reyes-Martinez, M. A.; Bokel, F. A.; Liu, F.;
Russell, T. P.; Hayward, R. C.; Briseno, A. L.; Emrick, T. ACS Appl
Mater Interfaces 2014, 6, 7705-11.
The relationships between conductivity and the AuNPs content in 6. Botiz, I.; Martinson, A. B.; Darling, S. B. Langmuir 2010, 26 (11),
8
756-8761.
DP-P3HT-S-AuNPs composites, and thickness of DP-P3HT-SH films
were systematically investigated. The conductivity of composites
increased with the addition of AuNPs and GDP-P3HT-S-AuNPs
composites showed the strongest conductivity among the DP-P3HT-
S-AuNPs made by three aggregation states, whereas the LDP-P3HT-
S-AuNPs composites had the lowest conductivity. In addition, every
aggregation state DP-P3HT-SH had a monotonic increase trend of
conductivity with increased film thickness.
7
8
.
.
Botiz, I.; Darling, S. B. Mater Today 2010, 13 (5), 42-51.
(a) Lin, Y.-H.; Darling, S. B.; Nikiforov, M. P.; Strzalka, J.; Verduzco,
R. Macromolecules 2012, 45 (16), 6571-6579; (b) Verduzco, R.;
Botiz, I.; Pickel, D. L.; Kilbey, S. M.; Hong, K.; Dimasi, E.; Darling,
S. B. Macromolecules 2011, 44 (3), 530-539.
(a) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000,
1
1
9
.
00, 2537-2574; (b) Babel, A.; Jenekhe, S. A. Synth. Met. 2005,
48, 169-173.
Accordingly, aggregation state ultimately impacted the 10. Fronk, S. L.; Mai, C.-K.; Ford, M.; Noland, R. P.; Bazan, G. C.
optoelectronic properties in solid state and the addition of gold Macromolecules 2015, 48, 6224-6232.
nanoparticles could improve optoelectronics performance. 11. Bu, L.; Dawson, T. J.; Hayward, R. C. ACS nano 2015, 9 (2), 1878-
885.
1
Therefore this work could play an important role in achieving new
1
2. (a) Jana, B.; Bhattacharyya, S.; Patra, A. Phys. Chem. Chem. Phys.
8
| RSC Advances, 2016, 00, 1-8
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins