C. André et al. / Tetrahedron: Asymmetry 9 (1998) 3737–3739
3739
of an equimolecular amount of ATP, and 50 U of HK. After 3 h, all starting materials were consumed
(Scheme 2). The formation of 4-deoxy-D-fructose-6-phosphate was controlled by coupled reactions of
phosphoglucose isomerase (PGI) and glucose-6-phosphate dehydrogenase13 (G6 PDH) (Scheme 2). The
activities of these enzymes at 1 mM concentration in substrate in this assay were 6% and 1%, respectively,
relative to their Vmax for fructose-6-phosphate.
Scheme 2.
In conclusion, enantiomerically pure 4-deoxy-D-fructose has been prepared and characterised in a
protected form. Acidic hydrolysis of the protected form led to an aqueous solution of 4-deoxy-D-fructose.
This close analogue of D-fructose is a substrate for hexokinase, allowing the synthesis of 4-deoxy-
fructose-6-phosphate. Activities of other enzymes of glucose metabolism could make possible the access
to other interesting analogues, such as 4-deoxy-D-glucose-6-phosphate.
References
1. Chevalier, N.; Callens, M.; Michels, A. M. Protein Expression and Purification 1995, 6, 39–44.
2. (a) Mengin-Lecreulx, D.; Van Heijenoort, J. J. Bacteriol. 1994, 276, 5788–5795. (b) Golinelli Pimpaneau, B.; Le Goffic,
F.; Badet, B. J. Am. Chem. Soc. 1989, 111, 3029–3034. (c) Badet-Denisot, M.-A.; Rene, L.; Badet, B. Bull. Soc. Chim. Fr.
1993, 130, 249–255.
3. Haylock, C. H.; Slessor, K. N. Can. J. Biochem. 1973, 51, 969–971.
4. Kucar, S.; Zemek, J.; Zamocky, J. Chem. Zvesti. 1982, 36(2), 241–244.
5. Enders, D.; Jegelka, U. Tetrehedron Lett. 1993, 34, 2453–2456.
6. (a) André, C.; Guérard, C.; Hecquet, L.; Demuynck, C.; Bolte, J. J. Mol. Catal. 1998, 5, 113–118. (b) André, C.;
Demuynck, C.; Geffllaut, T.; Guérard, C.; Hecquet, L.; Lemaire, M.; Bolte, J. J. Mol. Catal. 1998, in press.
7. (a) Enders, D.; Bocksteigel, B. Synthesis 1989, 493–496. (b) Enders, D.; Eichenauer, H. Chem. Ber. 1979, 112, 2933–2960.
(c) Enders, D.; Fey, P.; Kippardt, H. Org. Synth. 1987, 65, 173–183.
8. (a) Linden, G. B.; Gold, M. H. J. Org. Chem. 1956, 21, 1175–1176. (b) Jones, R. A. Y.; Katritzki, A. R.; Record, K. A. F.;
Scattergood, R.; Sullivan, J. M. J. Chem. Soc., Perkin Trans. 2 1974, 402–406.
9. Jung, M. E.; Shaw, T. J. J. Am. Chem. Soc. 1980, 102, 6304–6311.
10. Baer, E.; Basu, H. Can. J. Biochem. 1969, 47, 955–960.
11. Selected physical data of 6: 1H NMR (400 MHz, CDCl3) 1.28 (s, 3H), 1.31 (s, 3H), 1.43 (s, 3H), 1.55 (m, 1H, 55B), 1.63
00
00
(m, 1H, H6 ), 1.67–2.03 (m, 4H, 2H3 and 2H4), 2.35 (m, 1H, H6 ), 2.90–3.27 (m, 4H, H2, 2H6 and H5A), 3.35 (s, 3H),
B
A
3.58 (dd, 1H, H5 , Jgem=7.9, Jvic=7.1), 4.02 (dd, 1H, H5 , Jgem=8.1, Jvic=5.8), 4.09–4.35 (m, 3H, H4 , 2H6 , H4 ); 13C
00
00
0
0
00
B
A
NMR (100 MHz, CDCl3) 23.51, 23.63, 24.09, 24.36 (Ca, Cb, Ca0, Cb0), 25.02 and 25.91 (C3 and C4), 32.53 (C6 ), 56.23
00
0
00
00
0
0
00
(C7), 58.67 (C5), 60.32 (C2), 63.56 (C6 ), 66.71 (C4 ), 69.21 (C5 ), 70.70 (C4 ), 75.68 (C6), 100.01 (C2 ), 107.98 (C2 ),
0
100.31 (C5 ); MS, 341 (M−CH3).
25
23
12. Selected physical data of 7: [α]D −149.6 (c CHCl3); lit.6 [α]D −154.7 (neat). MS, 229 (M−CH3). 1H NMR (400 MHz,
0
0
0 0
=4.9),
6 B,4
CDCl3) 1.35 (s, 3H), 1.41 (s, 3H), 1.45 (s, 3H), 1.48 (s, 3H), 1.62 (ddd, 1H, H6 B, Jgem=14.4, Jvic 6 B,4=10.7, Jvic
0
0
0
0
0
0 0
=7.2 cis), 4.02 (d, 1H,
5 B,4
2.24 (ddd, 1H, H6 A, Jgem=14.4, Jvic
=8.3, Jvic 6 A,4=2.6), 3.57 (dd, 1H, H5 B, Jgem=8.1, Jvic
6 A,4
0
0
0
0 0 0
0 0
6H6B, Jgem=17.1), 4.04 (dd, 1H, H5 A, Jgem=8.3, Jvic
=5.8 trans) 4.22 (m, 1H, H4 , Jvic 4 ,6 A=8.2, Jvic 4 ,5 B=7.0 cis, Jvic
5 A,4
0
0
0
0
0
0
4 ,5 A=5.9 trans, Jvic 4 ,6 B=4.9), 4.28 (d, 1H, H6A, Jgem=17, J6A,4=1.4 Jw), 4.17 (dd, 1H, H4, Jvic 4,6 B=10.7, Jvic 4,6 A=2.6,
0 0
4,6A=1.4 Jw); 13C NMR (100 MHz, CDCl3) 23.7, 23.8 (Ca, Cb), 25.9, 27.1 (Ca , Cb ), 32.4 (C6 ), 66.6 (C4 ), 69.7 (C5 ),
0 0 0
J
0
72.0 (C6), 72.5 (C4), 101.1 (C2), 108.8 (C2 ), 209.1 (C5).
13. Bergmeyer, H. U. In Methods of Enzymatic Analysis, Verlag Chemie; 2nd Edition; Bergmeyer, H. U., Ed.; Academic Press,
Inc.: New York and London, 1974; pp. 1304–1307.