7876 J. Am. Chem. Soc., Vol. 120, No. 31, 1998
Kenis et al.
Scheme 2
Scheme 3
components than only the â333 and â311 which dominate the â
tensor in simple planar dipolar systems like PNA (Scheme 1).
For most of the multichromophoric systems the contribution of
the individual D-π-A units to the overall â tensor has not been
analyzed in the literature. However, if such a multichro-
mophoric system still has a considerable dipolar character, the
different contributions to the overall â tensor can be obtained
by analysis of the results of both electric-field-induced second-
harmonic generation (EFISH) and hyper-Rayleigh scattering
(HRS) because these techniques assess different combinations
of the first hyperpolarizability tensor. This was shown previ-
ously by Deussen et al.7 and Hendrickx et al.8 in their
investigation of the nonlinear optical properties of the bis-dipolar
certain conformers of calix[4]arenes, molecules containing three-
1
1,12
dimensional octupolar symmetry.
1
3
The calix[4]arene cyclophanes consist of four phenol
6
,6′-disubstituted binaphthol derivatives 6 (Scheme 2).
1
4
moieties connected by methylene bridges. The calix[4]arene
structure can adopt four extreme conformations: the cone, the
partial cone, the 1,2-alternate, and the 1,3-alternate (Scheme
Upon reducing the dipolar arrangement of D-π-A units in
such multichromophoric system, the dipolar component of the
â tensor will decrease, eventually to zero. However, Zyss et
15
3
). Upon alkylation of the phenolic hydroxyl groups with four
9,10
al. have shown that the third rank â tensor contains also an
octupolar component, which starts to play an important role in
nondipolar multichromophoric systems. Based on the math-
ematical properties of tensors they deduced that the hyperpo-
larizability â, which is a fully symmetric third-rank tensor under
propyl groups, interconversion between these conformations is
16
blocked resulting in four different conformers. By subsequent
introduction of four nitro groups at the para position of the
phenoxy groups, four D-π-A units are combined within each
4
,6
calix[4]arene (Scheme 3).
11
Kleinmann symmetry, will have two irreducible components:
The relative orientation of the four D-π-A units in the four
conformers is highly different, and the character of the conform-
ers varies from strongly dipolar for the cone and partial cone
a dipolar part of weight J ) 1 and an octupolar part (J ) 3, eq
1
), each having 2J + 1 independent coefficients.10
â ) âJ)1 + âJ)3
(paco) conformers to an essentially nondipolar symmetry for
(1)
the 1,2-alt(ernate) and 1,3-alt(ernate) conformers (Scheme 3).
The 1,2-alt and the 1,3-alt conformers represent examples of
three-dimensional nondipolar NLO molecules, in which the
dipolar vectors of the four chromophoric units are oppositely
oriented. Whereas the dipolar contribution will be significantly
lower than those of the cone and paco conformers, the 1,2-alt
and 1,3-alt conformers may exhibit interesting higher order
Due to the octupolar contribution, high hyperpolarizabilities â
can also be obtained for nondipolar multichromophoric systems.
Zyss9b has also shown that for molecules strictly belonging to
a multipolar symmetry group of weight J, all irreducible
tensorial components of weight lower than J cancel due to
symmetry requirements. Thus, for molecules with octupolar
symmetry (J ) 3) all dipolar (J ) 1) contributions vanish. The
main difference between the equivalent dipolar system and these
octupolar systems lies in the strongly different off-diagonal â311
values, while the diagonal â333 values are comparable. A typical
example, triisopropylaminotrinitrobenzene (3, TIATB), is de-
picted in Scheme 1. A difficulty of studying nondipolar
molecules is the lack of a dipole moment, thereby excluding
the possibility of the use of the EFISH technique. Until now,
mainly the nonlinear optical properties of molecules with highly
dipolar or two-dimensional (planar) octupolar symmetry have
been studied. Here we present a systematic investigation on
(octupolar) contributions to the hyperpolarizability of these
molecules.
In this paper we describe a systematic study of the nonlinear
optical properties of molecules which range from a dipolar
symmetry to a (partly) three-dimensional octupolar symmetry.
(11) Kleinman, D. A. Phys. ReV. 1962, 126, 1977.
(12) Recently, indications for three-dimensional octupolar symmetry in
bacteriorhodopsin trimers have been reported: Hendrickx, E.; Vinckier, A.;
Clays, K.; Persoons, A. J. Phys. Chem. 1996, 100, 19672-80.
(
13) The official IUPAC name for the unsubstituted [1.1.1.1]metacy-
clophane without the hydroxyl groups: pentacyclo[19.3.1.13,7.19,13.115,19]-
octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23-dodecaene.
(14) (a) B o¨ hmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713-745.
(
5) Kelderman, E.; Starmans, W. A. J.; Van Duynhoven, J. P. M.;
Verboom, W.; Engbersen, J. F. J.; Reinhoudt, D. N. Chem. Mater. 1994, 6,
12-417.
6) Kelderman, E.; Heesink, G. J. T.; Derhaeg, L.; Verbiest, T.; Klaase,
(b) Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge,
1989. (c) Calixarenes. A Versatile Class of Macrocylcic Compounds; Vicens,
J., B o¨ hmer, V., Eds.; Kluwer Academic Publishers: Dordrecht, 1991. (d)
Ikeda, A.; Shinkai, S. Chem. ReV. 1997, 97, 1713-1734. (e) Pochini, A.;
Ungaro, R In ComprehensiVe Supramolecular Chemistry; V o¨ gtle, F.; Ed.;
Pergamon Press: Oxford, 1996; Vol. 2, pp 103-144.
4
(
P. T. A.; Verboom, W.; Engbersen, J. F. J.; Van Hulst, N. F.; Persoons, A.;
Reinhoudt, D. N. Angew. Chem., Int. Ed. Engl. 1992, 31, 1074.
(
7) Deussen, H.-J.; Hendrickx, E.; Boutton, C.; Krog, D.; Clays, K.;
Bechgaard, K.; Persoons, A.; Bjornholm, T. J. Am. Chem. Soc. 1996, 118,
841-6852.
8) Hendrickx, E.; Boutton, C.; Clays, K.; Persoons, A.; Van Es, S.;
Biemans, T.; Meijer, B. Chem. Phys. Lett. 1997, 270, 241-244.
9) (a) Ledoux, I.; Zyss, J.; Siegel, J. S.; Brienne, J.; Lehn, J.-M. Chem.
Phys. Lett. 1990, 172, 440-444. (b) Zyss, J. J. Phys. Chem. 1993, 99, 6583-
599.
10) Zyss, J. Nonlinear Opt. 1991, 1, 1.
(15) (a) Van Loon, J.-D.; Arduini, A.; Coppi, L.; Verboom, W.; Pochini,
A.; Ungaro, R.; Harkema, S.; Reinhoudt, D. N. J. Org. Chem. 1990, 55,
5639. (b) Groenen, L. C.; Van Loon, J.-D.; Verboom, W.; Harkema, S.;
Casnati, A.; Ungaro, R.; Pochini, A.; Ugozzoli, F.; Reinhoudt, D. N. J.
Am. Chem. Soc. 1991, 113, 2385. (c) Groenen, L. C.; Ru e¨ l, B. H. M.;
Casnati, A.; Timmerman, P.; Verboom, W.; Harkema, S.; Pochini, A.;
Ungaro, R.; Reinhoudt, D. N. Tetrahedron Lett. 1991, 32, 2675.
(16) Iwamoto, K.; Araki, K.; Shinkai, S. J. Org. Chem. 1991, 56, 4955-
4962.
6
(
(
6
(