probe 2. Our result demonstrated that the regioisomers probe 1
and probe 2 show different intracellular specificities.
References
1 S. K. Kim, D. H. Lee, J. Hong and J. Yoon, Acc. Chem. Res., 2009, 42,
23.
2 A. T. Wright and E. V. Anslyn, Chem. Soc. Rev., 2006, 35, 14.
3 H. Refsum, A. D. Smith, P. M. Ueland, E. Nexo, R. Clarke, J. McPartlin,
C. Johnston, F. Engbaek, J. Schneede, C. McPartlin and J. M. Scott,
Clin. Chem., 2004, 50, 3.
4 J. Keelan, N. J. Allen, D. Antcliffe, S. Pal and M. R. Duchen, J. Neurosci.
Res., 2001, 66, 873.
5 (a) X. Chen, Y. Zhou, X. Peng and J. Yoon, Chem. Soc. Rev., 2010, 39,
2120; (b) X. Chen, S. Ko, M. Kim, I. Shin and J. Yoon, Chem. Commun.,
2010, 46, 2751; (c) Y.-B. Ruan, A.-F. Li, J.-S. Zhao, J.-S. Shen and Y.-B.
Jiang, Chem. Commun., 2010, 46, 4938; (d) B. Zhu, X. Zhang, Y. Li,
P. Wang, H. Zhang and X. Zhuang, Chem. Commun., 2010, 46, 5710;
(e) B. Zhu, X. Zhang, H. Jia, Y. Li, H. Liu and W. Tan, Org. Biomol.
Chem., 2010, 8, 1650; (f) B. Tang, L. Yin, X. Wang, Z. Chen, L. Tong
and K. Xu, Chem. Commun., 2009, 5293; (g) H. Li, J. Fan, J. Wang, M.
Tian, J. Du, S. Sun, P. Sun and X. Peng, Chem. Commun., 2009, 5904.
6 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed.;
Kluwer Academic/Plenum Publishers, New York, 1999.
7 T. Matsumoto, Y. Urano, T. Shoda, H. Kojima and T. Nagano, Org.
Lett., 2007, 9, 3375.
Conclusions
In conclusion, we have synthesized two new fluorescent OFF–
ON green-emitting thiol probes 1 and 2 based on BODIPY/2,4-
dinitrobenzenesulfonyl (DNBS) dyads. Probe 1 has the o-
substituted phenyl scaffold and probe 2 has the p-substitution
profile, thus the electron donor/electron acceptor distance of
probe 2 is larger than that of probe 1. This different electron
donor/acceptor distance may impose a significant effect on the
contrast ratio (PET efficiency) of the probes. Both probes show
intense absorption at approximately 500 nm. Probe 1 is non-
fluorescent. Cleavage of DNBS with thiols re-establishes the
emissive S1 state of BODIPY, up to 300-fold emission enhancement
was observed. A similar result was observed for probe 2 but
the emission enhancement decreased to 54-fold in the presence
of cysteine. The higher contrast ratio of probe 1 than probe
2 indicates more efficient PET from BODIPY to DNBS for
probe 1, due to the smaller electron donor/acceptor distance.
However, even with p-substitution, probe 2 is also a fluorescence
OFF–ON thiol probe, which is in stark contrast to a previously
reported BODIPY/maleimide dyad 5, which shows significant
background emission, due to the non-efficient PET from BODIPY
to the maleimide subunit. Thus our results demonstrate that
DNBS is a more potent electron acceptor than the well-established
maleimide, by 0.76 eV based on DFT/TDDFT calculations.
The sensing mechanism of the thiol probes was rationalized by
DFT/TDDFT calculations, which indicate the dark S1 excited
state (oscillator strength f = 0.0004 for the S0→S1 transition) for
probe 1 but the emissive S1 state for the cleaved products (i.e.
the BODIPY precursors of the probes, oscillator strength f =
0.4704 for the S0→S1 transition of BODIPY 1). The probes 1
and 2 were used for fluorescent imaging of intracellular thiols.
Probe 1 is specific for intracellular thiols (the green emission
will be inhibited by N-methylmaleimide). For probe 2, however,
the green emission is persistent even with pretreatment of the
cells with N-methylmaleimide. Our results show that DNBS
is more potent than maleimide as an electron acceptor, this
finding will be useful for assembly of fluorescent OFF–ON PET
molecular probes, especially with electron-deficient fluorophores as
the photo-excited electron donor, such as BODIPY. Furthermore,
rationalization of the sensing mechanism of the molecular probes
with DFT/TDDFT calculations will be useful for the design of
fluorescent molecular sensors with predetermined photophysical
properties.
8 J. Weh, A. Duerkop and O. S. Wolfbeis,, ChemBioChem, 2007, 8, 122.
9 (a) S. Ji, J. Yang, Q. Yang, S. Liu, M. Chen and J. Zhao, J. Org. Chem.,
2009, 74, 4855; (b) R. Zhang, X. Yu, Z. Ye, G. Wang, W. Zhang and J.
Yuan, Inorg. Chem., 2010, 49, 7898.
10 (a) G. Ulrich, R. Ziessel and A. Harriman, Angew. Chem., Int. Ed.,
2008, 47, 1184; (b) Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima and T.
Nagano, J. Am. Chem. Soc., 2004, 126, 3357.
11 S. C. Dodani, Q. He and C. J. Chang, J. Am. Chem. Soc., 2009, 131,
18020.
12 X. Peng, J. Du, J. Fan, J. Wang, Y. Wu, J. Zhao, S. Sun and T. Xu, J. Am.
Chem. Soc., 2007, 129, 1500.
13 X. Zhang, Y. Xiao and X. Qian, Angew. Chem., Int. Ed., 2008, 47, 8025.
14 (a) A. Coskun, E. Deniz and E. U. Akkaya, Org. Lett., 2005, 7,
5187; (b) Y. Kubo, Y. Minowa, T. Shoda and K. Kimiya Takeshita,
Tetrahedron Lett., 2010, 51, 1600.
15 (a) J. Bouffard, Y. Kim, T. M. Swager, R. Weissleder and S. A.
Hilderbrand, Org. Lett., 2008, 10, 37; (b) H. Maeda, K. Yamamoto,
Y. Nomura, I. Kohno, L. Hafsi, N. Ueda, S. Yoshida, M. Fukuda, Y.
Fukuyasu, Y. Yamauchi and N. Itoh, J. Am. Chem. Soc., 2005, 127, 68;
(c) X. Li, S. Qian, Q. He, B. Yang, J. Li and Y. Hu, Org. Biomol. Chem.,
2010, 8, 3627; (d) S.-P. Wang, W.-J. Deng, D. Sun, M. Yan, H. Zheng
and J.-G. Xu, Org. Biomol. Chem., 2009, 7, 4017.
16 H. Maeda, H. Matsuno, M. Ushida, K. Katayama, K. Saeki and N.
Itoh, Angew. Chem., Int. Ed., 2005, 44, 2922.
17 W. Jiang, Q. Fu, H. Fan, J. Ho and W. Wang, Angew. Chem., Int. Ed.,
2007, 46, 8445.
18 S. Ji, H. Guo, X. Yuan, X. Li, H. Ding, P. Gao, C. Zhao, W. Wu, W.
Wu and J. Zhao, Org. Lett., 2010, 12, 2876.
19 (a) E. B. Veale, G. M. Tocci, F. M. Pfeffer, P. E. Krugera and T.
Thorfinnur Gunnlaugsson, Org. Biomol. Chem., 2009, 7, 3447; (b) E. B.
Veale, D. O. Frimannsson, M. Lawler and T. Gunnlaugsson, Org. Lett.,
2009, 11, 4040.
20 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J.
Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E.
Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas,
J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09
(Revision A.1), Gaussian, Inc., Wallingford, CT, 2009.
Acknowledgements
We thank the NSFC (20972024 and 21073028), the Fundamental
Research Funds for the Central Universities (DUT10ZD212),
Ministry of Education (SRFDP-200801410004 and NCET-08-
0077), the Royal Society (UK) and NSFC (China-UK Cost-Share
Science Networks, 21011130154), State Key Laboratory of Fine
Chemicals (KF0802), State Key Laboratory of Chemo/Biosensing
and Chemometrics (2008009), the Education Department of
Liaoning Province (2009T015) and Dalian University of Tech-
nology for financial support.
21 F. Han, L. Chi, X. Liang, S. Ji, S. Liu, F. Zhou, Y. Wu, K. Han, J. Zhao
and T. D. James, J. Org. Chem., 2009, 74, 1333.
22 Y. Liu, J. Feng and A. Ren, J. Phys. Chem. A, 2008, 112, 3157.
23 O. A. Borg, S. S. M. C. Godinho, M. J. Lundqvist, S. Lunell and P.
Persson, J. Phys. Chem. A, 2008, 112, 4470.
3852 | Org. Biomol. Chem., 2011, 9, 3844–3853
This journal is
The Royal Society of Chemistry 2011
©