LETTER
C-Acetylation of Baylis–Hillman Adducts
1117
(
3) For recent examples: (a) Radha Krishna, P.; Nasingam, M.;
(12) (a) Collin, J.; Namy, J. L.; Dallemer, F.; Kagan, H. B. J. Org.
Chem. 1991, 56, 3118. (b) Liu, Y. J.; Wang, X. X.; Zhang,
Y. M. Synth. Commun. 2004, 34, 4009.
Kannan, V. Tetrahedron Lett. 2004, 45, 4773. (b) Rodgen,
S. A.; Schaus, S. E. Angew. Chem. Int. Ed. 2006, 45, 3913.
(
4
c) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44,
653. (d) Brzezinski, L. J.; Rafel, S.; Leahy, J. M. J. Am.
(13) Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M.
Angew. Chem. Int. Ed. 2005, 44, 3913.
Chem. Soc. 1997, 119, 4317. (e) Wori, M.; Kuroda, S.;
Dekura, F. J. Am. Chem. Soc. 1999, 121, 5591. (f) Trost, B.
M.; Thiel, O. R.; Tsui, H. C. J. Am. Chem. Soc. 2003, 125,
(14) General Procedure for C-Acetylation of Baylis–Hillman
Adducts
To a stirred solution of 6 mmol Sm powder (0.9 g) and
6 mmol Ac O (0.6 g) in 15 mL THF, 5 mol% FeCl , 4 mol%
13155.
2
3
(
(
(
4) Chamakh, A.; Mhirsi, M.; Villieras, J.; Lebreton, J.; Amri,
H. Synthesis 2000, 295.
5) Kim, J. M.; Im, Y. J.; Kim, T. H.; Kim, J. N. Bull. Korean
Chem. Soc. 2002, 23, 657.
6) Conditions for Nef reaction, see: (a) Das, N. B.; Sarma, J.
C.; Sharma, R. P.; Bordoloi, M. Tetrahedron Lett. 1993, 34,
I2 and 1 mmol Baylis–Hillman adduct 1 were added. The
resulting mixture was then allowed to reflux in the air. Until
completion of the reaction, 3 mL HCl (1 M) was then added
to quench the reaction and the mixture was successively
exacted with CH Cl (3 × 20 mL). The organic phase was
2
2
washed with 15 mL sat. brine, dried over anhyd Na SO , and
2
4
8
69. (b) Shechter, H.; Williams, F. T. J. Org. Chem. 1962,
filtered. The solvent was removed under reduced pressure to
give the crude products, which were purified by column
chromatography using EtOAc and PE (1:10) as eluent.
27, 3699. (c) Aizpurua, J. M.; Polomo, O. C. Tetrahedron
Lett. 1987, 28, 5361.
(
(
7) For review, see: Banik, B. K. Eur. J. Org. Chem. 2002, 2431.
8) (a) Jia, X.; Wang, H.; Huang, Q.; Kong, L.; Zhang, W. J.
Chem. Res. 2006, 135. (b) Li, J.; Xu, H.; Zhang, Y. M.
Tetrahedron Lett. 2005, 46, 1931.
Selected spectroscopic data for compounds 2 follow.
1
Compound 2a (R = Ph): H NMR (500 MHz, CDCl ): d =
3
7.93 (s, 1 H), 7.37–7.27 (m, 5 H), 3.80 (s, 3 H), 3.62 (s, 2 H),
1
3
2.25 (s, 3 H). C NMR (500 MHz, CDCl ): d = 206.1, 167.8,
3
(
9) (a) Li, J.; Wang, X. X.; Zhang, Y. M. Tetrahedron Lett.
142.2, 135.0, 128.9, 128.7, 128.6, 126.6, 52.2, 42.5, 30.1. IR
(film): 3058, 2952, 2847, 1703, 1639, 1575, 1492, 1437,
2
2
005, 46, 5233. (b) Li, J.; Wang, X. X.; Zhang, Y. M. Synlett
005, 1039. (c) Li, J.; Qian, W. X.; Zhang, Y. M.
–
1
1359, 1264, 1098, 764, 700 cm .
1
Tetrahedron 2004, 60, 5793.
Compound 2b (R = 3-MeOC H ): H NMR (500 MHz,
6 4
1
(
(
10) All new compounds were characterized by H NMR, 13C
CDCl ): d = 7.90 (s, 1 H), 7.30–6.84 (m, 4 H), 3.81 (s, 3 H),
3
1
3
NMR, IR spectroscopy, and elemental analysis.
3.80 (s, 3 H), 3.63 (s, 2 H), 2.26 (s, 3 H). C NMR (500
11) The stereochemistry of product 2 was all E, as was that of
MHz, CDCl ): d = 206.6, 168.4, 160.1, 142.8, 136.9, 130.2,
3
product 3.9 The H NMR spectrum of 2 was in good
c
1
127.4, 121.6, 115.2, 114.5, 55.8, 52.8, 43.2, 30.7. IR (film):
3001, 2953, 2850, 1706, 1637, 1600, 1580, 1488, 1433,
5
agreement with the reported data.
–
1
1
359, 1247, 1098, 790, 690 cm .
Synlett 2007, No. 7, 1115–1117 © Thieme Stuttgart · New York