6128
N. Narender et al. / Tetrahedron Letters 48 (2007) 6124–6128
NH4OH + HOI
NH4I + H2O2
+
-
HOI + CH3COOH
H2O + CH3COO I
R
R
I
R
-
CH3COO
- +
+
CH3COO I
CH3COOH
+
+
I
H
Scheme 2.
9. Elbs, K.; Jaroslawzee, A. J. Proki. Chem. 1913, 88, 92–94.
10. Marko, D. M.; Belyoew, U. A. Khim. Referat. Zhur. 1941,
4, 49–50.
11. Yang, S. G.; Kim, Y. H. Tetrahedron Lett. 1999, 40, 6051–
6054.
A plausible mechanism for the iodination of aromatic
compounds is shown in Scheme 2. It is assumed that
hydrogen peroxide oxidizes the IÉ (NH4I) to IÈ (HOI),
which further reacts in the presence of acetic acid
(Brønsted acid) with the organic substrate to give the
corresponding iodinated product.
12. Bradzil, L. C.; Cutler, C. J. J. Org. Chem. 1994, 59, 6233–
6244.
13. Krassowska-Swiebocka, B.; Lulinski, P.; Skulski, L.
Synthesis 1995, 926–928.
14. Cambie, R. C.; Rutledge, P. S.; Smith-Palmer, T.; Wood-
gate, P. D. J. Chem. Soc., Perkin Trans. 1 1976, 1161–
1164.
In conclusion, we have reported a practical, efficient,
relatively inexpensive and eco-friendly method for iodin-
ation of aromatic compounds using commercially avail-
able NH4I and H2O2. This method can be applied to a
wide range of aromatic compounds with moderate to
high regioselectivity.
15. Zupan, M.; Iskra, J.; Stavber, S. Tetrahedron Lett. 1997,
38, 6305–6306.
16. Blackmore, I. J.; Boa, A. N.; Murray, E. J.; Dennis, M.;
Woodward, S. Tetrahedron Lett. 1999, 40, 6671–6672.
17. Narender, N.; Srinivasu, P.; Kulkarni, S. J.; Raghavan, K.
V. Synth. Commun. 2002, 32, 2319–2324.
18. Brunel, Y.; Rousseau, G. Tetrahedron Lett. 1995, 45,
8217–8220.
Acknowledgement
K.S.K.R. thanks the CSIR, New Delhi, for the award of
a Senior Research Fellowship.
19. Iskra, J.; Stavber, S.; Zupan, M. Synthesis 2004, 1869–
1873.
20. Johnsson, R.; Meijer, A.; Ellervik, U. Tetrahedron 2005,
61, 11657–11663.
References and notes
21. Khalilzadeh, M. A.; Hosseini, A.; Shokrollahzadeh, M.;
Halvagar, M. R.; Ahmadi, D.; Mohannazadeh, F.;
Tajbakhsh, M. Tetrahedron Lett. 2006, 47, 3525–3528.
22. Vaghei, R. G. Tetrahedron Lett. 2003, 44, 7529–7532.
23. Kabalka, G. W.; Mereddy, A. R. Tetrahedron Lett. 2004,
45, 343–345.
24. Beinker, P.; Hanson, J. R.; Meindl, N.; Rodriguez
Medina, I. C. J. Chem. Res. (S) 1998, 204–205.
25. Branytska, O. V.; Neumann, R. J. Org. Chem. 2003, 68,
9510–9512.
26. Adimurthy, S.; Ramachandraiah, G.; Ghosh, P. K.;
Badekar, A. V. Tetrahedron Lett. 2003, 44, 5099–5101.
27. Lulinski, P.; Kryska, A.; Sosnowski, M.; Skulski, L.
Synthesis 2004, 441–445.
28. Firouzabadi, H.; Iranpoor, N.; Garzan, A. Adv. Synth.
Catal. 2005, 347, 1925–1928.
1. Olah, G. A.; Wang, Q.; Sandford, G.; Prakash, G. K. S.
J. Org. Chem. 1993, 58, 3194–3195.
2. Diederich, F.; Stang, P. J. Metal-Catalyzed Cross-Cou-
pling Reactions; Wiley-VCH: Weinheim, Germany, 1998.
3. Pizey, S. J. In Synthetic Reagents, Wiley: New York, 1977;
Vol. 3, p 227; Bothe, R.; Dial, C.; Conaway, R.; Pagni, R.
M.; Kabalka, G. W. Tetrahedron Lett. 1986, 27, 2207–
2210; Sugita, T.; Idei, M.; Takegami, Y. Chem. Lett. 1982,
1481–1484; Suzuki, H.; Haruta, Y. Bull. Chem. Soc. Jpn.
1973, 46, 589–592; Suzuki, H. Org. Synth. 1988, 4, 700.
4. Noda, Y.; Kashima, M. Tetrahedron Lett. 1997, 38, 6225–
6228.
5. Orito, K.; Hatakeyama, T.; Takeo, M.; Suginone, H.
Synthesis 1995, 1273–1277.
6. Hubig, S. M.; Jung, W.; Kochi, J. K. J. Org. Chem. 1994,
59, 6233–6244.
7. Barluenga, J.; Gonzalez, J. M.; Garcia-Martin, M. A.;
Campos, P. J.; Asensia, G. J. J. Org. Chem. 1993, 58,
2058–2060.
8. Edgar, K. J.; Falling, S. N. J. Org. Chem. 1990, 55, 5287–
5291.
29. Peroxide Chemistry: Mechanistic and Preparative Aspects
of Oxygen Transfer; Wiley-VCH: Weinheim, 2000.
30. Higgs, D. E.; Nelen, M. I.; Detty, M. R. Org. Lett. 2001, 3,
349–352; Sels, B.; De Vos, D.; Buntinx, M.; Pierard, F.;
Kirsch-De Mesmaeker, A.; Jacobs, P. Nature 1999, 400,
855–857.