10.1002/anie.201802785
Angewandte Chemie International Edition
COMMUNICATION
Information, Video S11). After the stress is released, the crystals
regain their original straight shape. In the crystal structure of
form 1, the building blocks of probenecid and azopyridine are
connected by weak intermolecular interactions of comparable
length, that is, C=O···π (~2.8 kcal mol‒1), C—H···O (~2.8 kcal
mol‒1) and van der Waals interactions (~0.9 kcal mol‒1 per atom
pair) in all three directions. The criss-crossed 2D layers
consisting of hydrogen-bonded probenecid/azopyridine units are
interconnected by weak intermolecular C—H···O hydrogen bond
(Figure 6c‒e). Such interlocked molecular packing and isotropic
intermolecular interactions in crystal structures were earlier
related to the elastic bendability of other molecular crystals,[20,21]
and could be the main contributor to the extraordinary elasticity
observed with the cocrystal in this work.
Keywords: actuators • azobenzene • photomechanical effects •
self-healing • single crystal
References
[1]
[2]
N. Huebsch, D. J. Mooney, Nature 2009, 462, 426‒432.
P. Naumov, S. C. Sahoo, B. A. Zakharov, E. V. Boldyreva, Angew.
Chem. Int. Ed. 2013, 52, 9990‒9995.
[3]
[4]
[5]
[6]
[7]
[8]
[9]
N. K. Nath, T. Runčevski, C.-Y. Lai, M. Chiesa, R. E. Dinnebier, P.
Naumov, J. Am. Chem. Soc. 2015, 137, 13866‒13875.
S. C. Sahoo, M. K. Panda, N. K. Nath, P. Naumov, J. Am. Chem. Soc.
2013, 135, 12241‒12251.
M. K. Panda, T. Runčevski, A. Husain, R. E. Dinnebier, P. Naumov, J.
Am. Chem. Soc. 2015, 137, 1895‒1902.
M. K. Panda, T. Runčevski, S. C. Sahoo, A. A. Belik, N. K. Nath, R. E.
Dinnebier, P. Naumov, Nat. Commun. 2014, 5, 4811.
N. K. Nath, L. Pejov, S. M. Nichols, C. Hu, N. Saleh, B. Kahr, P.
Naumov, J. Am. Chem. Soc. 2014, 136, 2757‒2766.
O. S. Bushuyev, A. Tomberg, T. Friščić, C. J. Barrett, J. Am. Chem.
Soc. 2013, 135, 12556‒12559.
In addition to the other mechanical properties described
above crystals of form 1 also display rapid and reversible
bending under UV light owing to the ability of the azopyridine
molecule[32] to undergo photoinduced trans-cis isomerization
(Supporting Information, Figure S13). Crystals of form 1 of size
in the range 6.0‒9.0 mm × 0.2‒0.5 mm × 0.08‒2.0 were
irradiated on their (001) face for 1 s with UV light from a
mercury-xenon lamp with a heat filter, and the photomechanical
response was recorded with a camera attached to a microscope.
The crystals bent away from the light source with a speed of
0.15‒2.15 mm s‒1, reaching maximum deflection of 0.08‒1.14
mm within 0.49‒0.57 s when exposed to UV light with power
580.0 mW cm‒2. After the irradiation was terminated, the crystals
instantly regained their original straight shape within 0.39‒0.44 s
with a speed of 0.2‒2.66 mm s‒1. To check the dependence of
the maximal deflection on the UV excitation power, 14 crystals
were irradiated on their wider face with UV light with excitation
power ranging from 58.5‒580 mW cm‒2 in 10 different steps at a
O. S. Bushuyev, T. A. Singleton, C. J. Barrett, Adv. Mater. 2013, 25,
1796‒1800.
[10] H. Koshima, N. Ojima, H. Uchimoto, J. Am. Chem. Soc. 2009, 131,
6890‒6891.
[11] T. Shima, T. Muraoka, N. Hoshino, T. Akutagawa, Y. Kobayashi, K.
Kinbara, Angew. Chem. Int. Ed. 2014, 53, 7173‒7178.
[12] M. Dharmarwardana, R. P. Welch, S. Kwon, V. K. Nguyen, G. T.
McCandless, M. A. Omary, J. J. Gassensmith, Chem. Commun. 2017,
53, 9890‒9893.
[13] S. C. Cheng, K.-J. Chen, Y. Suzaki, Y. Tsuchido, T. -S. Kuo, K.
Osakada, M. Horie, J. Am. Chem. Soc. 2018, 140, 90‒93.
[14] R. Samanta, S. Ghosh, R. Devarapalli, C. M. Reddy, Chem. Mater.
2018, 30, 577–581.
[15] D. Kitagawa, H. Nishi, S. Kobatake, Angew. Chem. Int. Ed. 2013, 52,
9320‒9322.
[16] L. Zhu, R. O. Al-Kaysi, C. J. Bardeen, J. Am. Chem. Soc. 2011, 133,
12569‒12575.
distance of
2 cm from the UV light output (Supporting
Information, Video S12). It was found that, at least within the
range of excitation powers used in the experiment, the maximum
deflection increases with increasing UV excitation power
(Supporting Information, Figure S14). The crystals retained their
macroscopic integrity and were actuated several times without
any detectable damage and loss of crystallinity, even when they
were exposed to the highest attainable power of the UV light for
more than 10 minutes.
[17] R. Rai, B. P. Krishnan, K. M. Sureshan, Proc. Natl. Acad. Sci U.S.A.
2018, 115, 2896‒2901.
[18] E. Uchida, R. Azumi, Y. Norikane, Nat. Commun. 2015, 6, 7310.
[19] T. Taniguchi, H. Sugiyama, H. Uekusa, M. Shiro, T. Asahi, H. Koshima,
Nat. Commun. 2018, 9, 538.
[20] P. Naumov, S. Chizhik, M. K. Panda, N. K. Nath, E. Boldyreva, Chem.
Rev. 2015, 115, 12440‒12490.
[21] P. Commins, I. T. Desta, D. P. Karothu, M. K. Panda, P. Naumov,
Chem. Commun. 2016, 52, 13941‒13954.
In summary, we have demonstrated the first example of a
multifunctional molecular crystal which combines three
functionalities and can respond to multiple external stimuli—heat,
light and mechanical force. The mechanical response of this
material is not only rapid, but it is also reversible and occurs with
short recovery times, and thus meets the main requirements for
[22] T. Kim, L. Zhu, R. O. Al-Kaysi, C. J. Bardeen, ChemPhysChem 2014,
15, 400‒414.
[23] H. Wang, P. Chen, Z. Wu, J. Zhao, J. Sun, R. Lu, Angew. Chem. Int.
Ed. 2017, 56, 9463‒9467.
[24] S. Ghosh, M. K. Mishra, S. B. Kadambi, U. Ramamurty, G. R. Desiraju,
Angew. Chem. Int. Ed. 2015, 54, 2674‒2678.
[25] S. Ghosh, C. M. Reddy, Angew. Chem. Int. Ed. 2012, 51, 10319‒10323.
[26] A. Worthy, A. Grosjean, M. C. Pfrunder, Y. Xu, C. Yan, G. Edwards, J.
K. Clegg, J. C. McMurtrie, Nat. Chem. 2018, 10, 65‒69.
[27] S. Saha, G. R. Desiraju, J. Am. Chem. Soc. 2017, 139, 1975‒1983.
[28] S. Ghosh, M. K. Mishra, S. Ganguly, G. R. Desiraju, J. Am. Chem. Soc.
2015, 137, 9912‒9921.
a
multifunctional, soft molecular crystalline material. An
additional trait of this material is the ability to heal by heat, which
turns this and related cocrystals into prospective candidates for
robust and durable singe crystal actuators.
[29] P. Commins, H. Hara, P. Naumov, Angew. Chem. Int. Ed. 2016, 55,
13028-13032.
Acknowledgements
[30] G. Liu, J. Liu, X. Ye, L. Nie, P. Gu, X. Tao, Q. Zhang, Angew. Chem. Int.
Ed. 2017, 56, 198‒202.
We thank NIT Meghalaya for fellowship (to P.G.) and for a
startup grant (N.K.N). This work was financially supportd by DST
SERB ECR Grant (ECR/2016/000331). We thank Dr. Laing Li
(NYUAD) for his support with the DSC experiments. We thank
NIT Meghalaya for the instrumental facilities. This research was
partially carried out using Core Technology Platform (CTP)
resources at New York University Abu Dhabi.
[31] D. P. Karothu, J. Weston, I. T. Desta, P. Naumov, J. Am. Chem. Soc.
2016, 138, 13298‒13306.
[32] E. V. Brown, G. R. Granneman, J. Am. Chem. Soc. 1975, 97, 621‒627.
This article is protected by copyright. All rights reserved.