Organic Letters
Letter
Morioku, K.; Suzuki, H.; Takeuchi, Y.; Nishina, Y. Org. Lett. 2016, 18,
2020.
̈
(5) Xu, P.; Wurthwein, E.-U.; Daniliuc, C. G.; Studer, A. Angew.
Chem., Int. Ed. 2017, 95, 1527.
(6) Clayden, J.; Turnbull, R.; Pinto, I. Org. Lett. 2004, 6, 609.
(7) Clayden, J.; Turnbull, R.; Helliwell, M.; Pinto, I. Chem. Commun.
2004, 21, 2430.
(8) (a) Hill, J. E.; Matlock, J. V.; Lefebvre, Q.; Cooper, K. G.;
Clayden, J. Angew. Chem., Int. Ed. 2018, 57, 5788. (b) Hall, J. E.;
Matlock, J. V.; Ward, J. W.; Gray, K. V.; Clayden, J. Angew. Chem., Int.
led to less predictable yields and selectivities. Substrates
derived from tryptamine, as well as other biorelevant structures
such as tricyclic indoles 6, underwent the reaction. The
reaction proved to be diastereoselective and (with enantioen-
riched α-chiral organolithiums) enantiospecific, and the
method has potential for the modular synthesis of modified
indole alkaloid derivatives.
ASSOCIATED CONTENT
* Supporting Information
■
́
Ed. 2016, 55, 11153. (c) Corbet, B. P.; Matlock, J. V.; Mas Rosello, J.;
S
Clayden, J. C. R. Chim. 2017, 20, 634. (d) Tait, M. B.; Butterworth,
S.; Clayden, J. Org. Lett. 2015, 17, 1236. (e) Maury, J.; Clayden, J. J.
Org. Chem. 2015, 80, 10757. (f) Clayden, J.; Dufour, J.; Grainger, D.
M.; Helliwell, M. J. Am. Chem. Soc. 2007, 129, 7488. (g) Tetlow, D. J.;
Hennecke, U.; Raftery, J.; Waring, M. J.; Clarke, D. S.; Clayden, J.
Org. Lett. 2010, 12, 5442. (h) Clayden, J.; Donnard, M.; Lefranc, J.;
Minassi, A.; Tetlow, D. J. J. Am. Chem. Soc. 2010, 132, 6624.
(i) Clayden, J.; Farnaby, W.; Grainger, D. M.; Hennecke, U.;
Mancinelli, M.; Tetlow, D. J.; Hillier, I. H.; Vincent, M. A. J. Am.
Chem. Soc. 2009, 131, 3410.
The Supporting Information is available free of charge on the
Full experimental data and NMR spectra of all new
Accession Codes
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(9) Cheng, H.-G.; Lu, L.-Q.; Wang, T.; Yang, Q.-Q.; Liu, X.-P.; Li,
Y.; Deng, Q.-H.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2013,
52, 3250.
(10) A similar substrate containing a bromine atom completely
decomposed under the reaction conditions, presumably due to
competitive aryne generation.
(11) For 2d and 2e, 10% of a minor diastereoisomer was obtained.
(12) Vincent, M. A.; Maury, J.; Hillier, I. H.; Clayden, J. Eur. J. Org.
Chem. 2015, 2015, 953.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(13) This method provides an unusual 6−5−5 tricyclic system,
comparable to the ubiquitous 6−5−6 tricyclic system of tryptolines.
For examples and relevance of such tricycles in medicinal chemistry,
see: (a) Alagille, D.; Pfeiffer, B.; Scalbert, E.; Ferry, G.; Boutin, J. A.;
Renard, P.; Viaud-Massuard, M.-C. J. Enzyme Inhib. Med. Chem. 2004,
19, 137. (b) Chaulet, C.; Croix, C.; Alagille, D.; Normand, S.; Delwail,
A.; Favot, L.; Lecron, J.-C.; Viaud-Massuard, M.-C. Bioorg. Med.
Chem. Lett. 2011, 21, 1019. (c) Kong, W.-J.; Chen, X.; Wang, M.; Dai,
H.-X.; Yu, J.-Q. Org. Lett. 2018, 20, 284.
(14) Replacing the methyl by a phenyl group almost completely
diverted the reaction to decomposition, giving the product in less than
10% yield.
(15) (a) Atkinson, R. C.; Leonard, D. J.; Maury, J.; Castagnolo, D.;
Volz, N.; Clayden, J. Chem. Commun. 2013, 49, 9734. (b) Fournier, A.
M.; Nichols, C. J.; Vincent, M. A.; Hillier, I. H.; Clayden, J. Chem. -
Eur. J. 2012, 18, 16478.
Author Contributions
‡J.E.H. and Q.L. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the EPSRC, the Bristol Centre for
Doctoral Training in Chemical Synthesis, AstraZeneca through
a CASE award and the Deutsche Forschungsgemeinschaft
(research fellowship LE 3853/1-1). We thank Dr. Hazel
Sparkes and Dr. Natalie Pridmore (School of Chemistry,
University of Bristol) for determining the X-ray crystal
structures of 2g and 7a.
(16) Deuterolysis of the reaction mixture did not give deuterated
products, maybe because of rapid H/D exchange with i-Pr2NH.
REFERENCES
■
(1) (a) Seigler, D. S. Plant secondary metabolism; Springer: Boston,
MA, 1998; p 628. (b) Xu, W.; Gavia, D. J.; Tang, Y. Nat. Prod. Rep.
2014, 31, 1474. (c) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Nat.
Prod. Rep. 2015, 32, 1389.
(2) Examples of such alkaloids are found in Aspidosperma and
Strychnos spp., as well as among pyrroloindoles, cyclotryptamines,
communesines, and spiroindolines.
̀
(3) (a) Dearomatizing reactions using organolithiums: Lemiere, G.;
Clayden, J. Sci. Synth., 2011, 4, 139. (b) Clayden, J.; Kenworthy, M.
N.; Helliwell, M. Org. Lett. 2003, 5, 831. (c) Clayden, J.; Purewal, S.;
Helliwell, M.; Mantell, S. Angew. Chem., Int. Ed. 2002, 41, 1049.
(d) Bragg, R. A.; Clayden, J.; Bladon, M.; Ichihara, I. Tetrahedron Lett.
2001, 42, 3411. (e) Clayden, J.; Menet, C. J. Tetrahedron Lett. 2003,
44, 3059. (f) Clayden, J.; Hamilton, S. D.; Mohammed, R. T. Org.
Lett. 2005, 7, 3673.
(4) (a) Nandi, R. K.; Ratsch, F.; Beaud, R.; Guillot, R.; Kouklovsky,
C.; Vincent, G. Chem. Commun. 2016, 52, 5328. (b) Morimoto, N.;
D
Org. Lett. XXXX, XXX, XXX−XXX