110
A. Huczyn´ski et al. / Journal of Molecular Structure 797 (2006) 99–110
are always broken. For this reason the 13C NMR signals of
the C1 carbon atoms are shifted toward higher ppm values
(Table 3).
In all the calculated structures the OIVHꢁ ꢁ ꢁOIX intramo-
lecular hydrogen bond in the MON3–Li+ complex was the
strongest.
The calculated structures of the MON3 and its complex-
es with the cations studied are visualized in Schemes 3–6.
The hydrogen bonds and the coordination bonds are
marked by dots. A comparison of all the calculated struc-
tures indicates that only for the MON3 complex with
Na+ cation the molecule forms a pseudo-crown ether struc-
ture and therefore, the affinity of MON3 to Na+ cation is
higher than that to the other cations.
[11] F.A. Almeida Paz, P.J. Gates, S. Fowler, A. Gallimore, B. Harvey,
N.P. Lopes, C.B.W. Stark, J. Staunton, J. Klinowskia, J.B. Spencera,
Acta Crystallogr. E 59 (2003) 1050.
[12] D.L. Turner, J. Magn. Reson. Ser. B 108 (1995) 137.
[13] T. Martinek, F.G. Riddell, C. Wilson, C.T. Weller, J. Chem. Soc.
Perkin Trans. 2 (2000) 35.
[14] A. Nagastu, R. Tanaka, H. Mizukami, Y. Ogihara, J. Sakakibara,
Tetrahedron 57 (2001) 3369.
[15] T.S. Edrington, T.R. Callaway, P.D. Varey, Y.S. Jung, K.M.
Bischoff, R.O. Elder, R.C. Anderson, E. Kutter, A.D. Brabban,
D.J. Nisbet, J. Appl. Microbiol. 94 (2003) 207.
[16] M. Rochdi, A.M. Delort, J. Guyot, M. Sancelme, S. Gibot, J.G.
Gourcy, G. Dauphin, C. Gumila, H. Vial, G. Jeminet, J. Med. Chem.
19 (1996) 588.
[17] A. Iacoangeli, G. Melucci-Vigo, G. Risuleo, Biochimie 82 (2000) 35.
[18] W.H. Park, J.G. Seol, E.S. Kim, W.K. Kang, Y.H. Im, C.W. Jung,
B.K. Kim, Y.Y. Lee, Br. J. Hematol. 119 (2002) 400.
[19] W.H. Park, E.S. Kim1, C.W. Jung, B.K. Kim, Y.Y. Lee, Int. J.
Oncol. 22 (2003) 377.
[20] R. Ferdani, G.W. Gokel, Encyclopedia of Supramolecular Chemistry:
Ionophores, Marcel Dekker, New York, 2004, p. 760.
[21] M.S. Shaik, A. Chatterjee, M. Singh, J. Pharm. Pharmacol. 56 (2004)
899.
References
[1] V.C. Langston, F. Galey, R. Lovell, W.B. Buck, Vet. Med. 80 (1985)
75–84.
[2] Y. Miyazaki, M. Shibuya, M. Sugasawa, O. Kawaguchi, C. Hirose, J.
Nagatsu, S. Esumi, J. Antibiot. 27 (1974) 814.
[3] B.C. Granzin, G.McL. Dryden, Anim. Feed Sci. Technol. 120 (2005)
116.
[4] V. Rada, M. Marounek, Ann. Zeotech. 45 (1996) 283.
[5] B. Kohler, H. Karch, H. Schmidt, Microbiology 146 (2000) 1085.
[6] W.L. Duax, G.D. Smith, P.D. Strong, J. Am. Chem. Soc. 102 (1980)
6725.
[22] J.W. Westley, in: Polyether Antibiotics. Naturally Occurring Acid
Ionophores, vol. 1, Marcel Dekker, New York, 1982, p. 1.
[23] W. Westley, in: Polyether Antibiotics. Naturally Occurring Acid
Ionophores, vol. 2, Marcel Dekker, New York, 1983, p. 51.
[24] B.C. Pressman, Antibiotics and Their Complexes, Marcel Dekker,
New York, 1985, p. 1.
´
[25] A. Huczynski, P. Przybylski, B. Brzezinski, F. Bartl, J. Mol. Struct.
788 (2006) 176.
[7] D.L. Ward, K.T. Wei, J.C. Hoogerheide, A.I. Popov, Acta Crystal-
logr. Sect. B 34 (1978) 110.
´
[26] A. Huczynski, P. Przybylski, B. Brzezinski, F. Bartl, Biopolymers 81
(2006) 282.
[8] M. Pinkerton, L.K. Steinrauf, J. Mol. Biol. 49 (1970) 533.
[9] W. Pangborn, W. Duax, D. Langs, J. Am. Chem. Soc. 109 (1987)
2163.
[10] P.Y. Barrans, M. Alleume, G. Jeminet, Acta Crystallogr. Sect. B 38
(1982) 1144.
[27] J.J.P. Stewart, J. Comput. Chem. 10 (1989) 209.
[28] J.J.P. Stewart, J. Comput. Chem. 12 (1991) 320.
[29] CAChe 5.04 UserGuide, Fujitsu, 2003.
[30] B. Brzezinski, G. Schroeder, A. Rabold, G. Zundel, J. Phys. Chem. 99
(1995) 8519.