2. G. V. Smith and F. Notheisz, Heterogeneous Catalysis in Organic
Chemistry, Academic Press, New York, 1999, p. 71.
3. (a) R. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, 30, 97;
(b) S. Hashiguichi, A. Fujii and J. Takehara, J. Am. Chem. Soc.,
1995, 117, 7562; (c) M. J. Palmer and M. Wills, Tetrahedron:
Asymmetry, 1999, 10, 2045; (d) T. Ikariya and A. J. Blacker, Acc.
Chem. Res., 2007, 40, 1300.
Scheme 1 Catalytic transfer hydrogenation of 4-nitroacetophenone
over Au/TiO2.
4. (a) R. Johnstone, A. H. Wilby and I. D. Entwistle, Chem. Rev.,
1985, 85, 129; (b) B. M. Wile and M. Stradiotto, Chem. Commun.,
2006, 4104; (c) B. Procuranti and S. J. Connon, Chem. Commun.,
2007, 1421.
5. (a) Y. Ukisu and T. Miyadera, J. Mol. Catal. A: Chem., 1997, 125,
135; (b) S. K. Mohapatra, S. U. Sonavane, R. V. Jayaram and
P. Selvam, Org. Lett., 2002, 4, 4297; (c) Y. Ukisu and
T. Miyadera, Appl. Catal., B, 2003, 40, 141; (d) J. Yu, H. Wu,
C. Ramarao, J. B. Spencer and S. V. Ley, Chem. Commun., 2003,
678; (e) P. Selvam, S. K. Mohapatra, S. U. Sonavane and
R. V. Jayaram, Appl. Catal., B, 2004, 49, 251; (f) P. Selvam,
S. U. Sonavane, S. K. Mohapatra and R. V. Jayaram, Adv. Synth.
Catal., 2004, 346, 542.
6. C. A. Merlic, S. Motamed and B. Quinn, J. Org. Chem., 1995, 60,
3365.
7. N. R. Ayyanger, A. G. Lugade, P. V. Nikrad and V. K. Sharma,
Synthesis, 1981, 640.
8. T. L. Gilchrist, in Comprehensive Organic Synthesis, ed.
B. M. Trost and I Fleming, Pergamon Press, Oxford, 1991, vol.
8, p. 388.
9. (a) M. Haruta, S. Tsubota, T. Kobayashi and S. Iijima, J. Catal.,
1989, 115, 301; (b) M. Haruta, S. Tsubotas, T. Kobayashi,
H. Kageyama, M. J. Genet and B. Delmon, J. Catal., 1993, 144,
175; (c) M. Haruta, Catal. Today, 1997, 36, 153; (d) M. Haruta,
CATTECH, 2002, 6, 102.
10. (a) H. Tsunoyama, H. Sakurai, Y. Negishi and T. Tsukuda, J. Am.
Chem. Soc., 2005, 127, 9374; (b) H. Miyamura, R. Matsubara,
Y. Miyazaki and S. Kabayashi, Angew. Chem., Int. Ed., 2007, 46,
4151; (c) F. Z. Su, Y. M. Liu, L. C. Wang, Y. Cao, H. Y. He and
K. N. Fan, Angew. Chem., Int. Ed., 2008, 47, 334.
11. (a) A. S. K. Hashmi and G. J. Hutchings, Angew. Chem., Int. Ed.,
2006, 45, 7896; (b) C. W. Corti, R. J. Holliday and
D. T. Thompson, Top. Catal., 2007, 44, 331.
12. (a) C. Milone, R. Ingaglia, M. L. Tropeano, G. Neri and
S. Galvagno, Chem. Commun., 2003, 868; (b) P. Claus, Appl.
Catal., A, 2005, 291, 222.
13. A. Corma and P. Serna, Science, 2006, 313, 332.
14. (a) F. Moreau, G. C. Bond and A. O. Taylor, J. Catal., 2005, 231,
105; (b) F. Moreau and G. C. Bond, Appl. Catal., A, 2006, 302,
110.
15. M. Boronat, P. Concepcion, A. Corma, S. Gonzalez, F. lllas and
P. Serna, J. Am. Chem. Soc., 2007, 129, 16230.
16. X. Wu, J. Liu, X. Li, A. Zanotti-Gerosa, F. Hancock, D. Vinci,
J. Ruan and J. Xiao, Angew. Chem., Int. Ed., 2006, 45, 6718.
17. A. Abad, C. Almela, A. Corma and H. Garcia, Chem. Commun.,
2006, 3178.
18. (a) P. N. Rylander, Catalytic Hydrogenation in Organic Synthesis,
Academic Press, New York, 1979, p. 122; (b) U. Siegrist,
P. Baumeister and H.-U. Blaser, Catalysis of Organic Reactions,
ed. F Herker, Dekker, New York, vol. 75 of Chemical Industries,
1998.
to note that the transfer hydrogenation of benzaldehyde can
also proceed efficiently under base-free conditions (entry 2),
although a higher reaction temperature is required. This
indicated that the presence of a base is helpful to form the
Au–H complex17 via interaction with the hydrogen donor,
which is believed to be the key active intermediate for transfer
hydrogenation.
The selective and rapid reduction of nitro groups in the
presence of carbonyl functionalities is also a highly valuable
transformation in organic synthesis.18 The development of an
efficient catalytic system to achieve this goal has attracted
considerable effort recently.13,19 Therefore it was decided to
investigate whether Au/TiO2 could provide a viable solution to
this challenge. The result showed that Au/TiO2 mediated
transfer hydrogenation can afford highly efficient reduction
of nitro groups in the presence of carbonyl functionalities
(Scheme 1). It is remarkable that 100% chemoselectivity in
terms of –NO2 reduction can be achieved for 4-aminoaceto-
phenone production. Such reaction exclusivity, notably the
absence of any carbonyl group or ring reduction, is unique
when compared with the conventional catalytic systems.5e,20
In summary, we have demonstrated that the non-flammable
Au/TiO2 regent has great potential for catalytic transfer
hydrogenation. This catalyst has been proven to be highly
efficient and chemoselective in the reduction of carbonyl and
nitro groups. The efficiency and stability of the catalyst has
also been demonstrated convincingly by conducting five suc-
cessive runs without any drop in the reaction rate. Further
application of the Au-based catalytic system to many other
key transformations is currently being explored.
Financial support by the National Natural Science Founda-
tion of China (20421303, 20473021, 20633030), the National
High Technology Research and Development Program of
China (2066AA03Z336), and the National Basic Research
Program of China (2003CB615807), the Shanghai Science &
Technology Committee (07QH14003) and Shanghai Educa-
tion Committee (06SG03) is kindly acknowledged.
Notes and references
1. (a) R. C. Larock, Organic Transformations, VCH, New York,
1989, p. 411 ; (b) G. W. Kabalka and R. S. Verma, Comprehensive
Organic Synthesis, ed. B. M. Trost and I Fleming, Pergamon
Press, Oxford, 1991, vol. 8, p. 363.
19. A. Corma, P. Concepcion and P. Serna, Angew. Chem., Int. Ed.,
2007, 46, 7266.
20. P. Selvam, S. U. Sonavan, S. K. Mohapatra and R. V. Jayaram,
Tetrahedron Lett., 2004, 45, 3071.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 3531–3533 | 3533