2186
J . Org. Chem. 1999, 64, 2186-2187
New Ch ir a l Rh od iu m a n d Ir id iu m Com p lexes
w ith Ch ir a l Dia m in e Liga n d s for Asym m etr ic
Tr a n sfer Hyd r ogen a tion of Ar om a tic Keton es
Kunihiko Murata and Takao Ikariya*
Department of Chemical Engineering, Faculty of Engineering,
Tokyo Institute of Technology and CREST, J apan Science and
Technology Corporation, 2-12-1 O-okayama, Meguro-ku,
Tokyo 152-8552 J apan
Ryoji Noyori
Department of Chemistry and Research Center for Materials
Science, Nagoya University, Chikusa, Nagoya 464-8602 J apan
Received February 4, 1999
Catalytic asymmetric transfer hydrogenation using 2-pro-
panol or formic acid as a hydrogen source is a useful
complement to catalytic asymmetric hydrogenation as a
practical tool for the stereoselective synthesis of chiral
alcohols or amines.1,2 We have recently developed highly
efficient chiral diamine-based Ru(II) catalysts, RuCl(Tsd-
pen)(µ6-arene) (1a ) (TsDPEN: N-(p-toluenesulfonyl)-1,2-
diphenylethylenediamine) for the asymmetric transfer hy-
drogenation of ketones and imines to chiral alcohols and
amines with excellent enantiomeric purities.3 The Ru(II)-
catalyzed hydrogen transfer reaction was found to be
promoted by an isolable 18-electron chiral Ru hydride (1b)
or 16-electron Ru amide (1c) complex, which is a catalyst or
intermediate derived from catalyst precursor 1a . The con-
version of 1b to 1c in the catalysis takes place by the action
of ketones or imines possibly via a six-membered cyclic
transition state stabilized by a hydrogen bond between an
NH moiety in the ligand and C)X (X ) O, NR).3f,i This
metal/ligand bifunctional effect, therefore, results in excel-
lent catalyst performance in terms of the rate and the
enantioselectivity for the catalytic reduction using molecular
hydrogen4 or organic hydrogen sources.5 We now disclose a
synthesis of a new type of rhodium or iridium complex,
Cp*MCl(Tsdiamine) (M ) Rh, Ir), which has a structure
isoelectronic with the chiral Ru complex (1a ).3a,f These
isolable complexes have proved to efficiently catalyze the
asymmetric hydrogen transfer of simple aromatic ketones
in 2-propanol containing a base.
The chiral Rh or Ir complexes with Cp* and chiral diamine
ligands were prepared as orange to yellow crystals (2a -4a )
by reacting [Cp*MCl2]2 with (R,R)-TsCYDN or (R,R)-TsD-
PEN ([Cp*MCl2]2/diamine/base ) 1:2:4.2, Cp*: pentameth-
ylcyclopentadienyl, M ) Rh, Ir; (R,R)-TsCYDN: (1R,2R)-N-
(p-toluenesulfonyl)-1,2-cyclohexanediamine) in the presence
of (C2H5)3N at room temperature. 1H NMR analysis of these
complexes confirms the diastereoselective formation of a
single stereoisomer.6 The single-crystal X-ray crystallo-
graphic analysis of Cp*RhCl[(R,R)-Tscydn] (2a ) illustrated
in Figure 1 shows that 2a has a distorted octahedral
coordination environment with Cp*, amino, sulfonamido,
and chloro ligands.6 The chirality of the (R,R)-diamine ligand
that forms a λ-configured five-membered ring determines the
S configuration at the central metal as observed in the chiral
Ru complex (1a ). It should be noted that there is a very short
Cl‚‚‚N distance (2a : 2.70, 3a : 2.66, 4a : 2.70 Å) that is
ascribed to intramolecular hydrogen bonding. Since Cp*MCl-
(diamine) has an acidic proton on the N atom, the facile
elimination of HCl with a base in alcohols gave an isolable
hydride complex through the amide complex. For example,
(4) Before this finding of an NH effect in the transfer hydrogenation of
ketones, the same effect had been proposed in asymmetric hydrogenations
catalyzed by the Ru-BINAP-diamine catalyst system. See: (a) Ohkuma, T.;
Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J . Am. Chem. Soc. 1995,
117, 2675-2676. (b) Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J . Am.
Chem. Soc. 1995, 117, 10417-10418. (c) Ohkuma, T.; Yamakawa, M.;
Ikariya, T.; Noyori, R. J . Org. Chem. 1996, 61, 4872-4873. (d) Ohkuma,
T.; Ikehira, H.; Ikariya, T.; Noyori, R. Synlett 1997, 467-468. (e) Ohkuma,
T.; Doucet, H.; Pham, T.; Mikami, K.; Korenaga, T.; Terada, M.; Noyori, R.
J . Am. Chem. Soc. 1998, 120, 1086-1087. (f) Doucet, H.; Ohkuma, T.;
Murata, K.; Yokozawa, T.; Kozawa, M.; Katayama, E.; England, A. F.;
Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1998, 37, 1703-1707.
(5) (a) Pu¨ntener, K.; Schwink, L.; Knochel, P. Tetrahedron Lett. 1996,
37, 8165-8168. (b) J iang, Y.; J iang, Q.; Zhu, G.; Zhang, X. Tetrahedron
Lett. 1997, 38, 6565-6568. (b) Inoue, S.; Nomura, K.; Hashiguchi, S.; Noyori,
R.; Izawa, Y. Chem. Lett. 1997, 957-958. (c) Halle, R. T.; Bre´he´ret, A.;
Schulz, E.; Pinel, C.; Lemaire, M. Tetrahedron: Asymmetry 1997, 8, 2101-
2108. (d) Palmer, M.; Walsgrove, T.; Wills, M. J . Org. Chem. 1997, 62, 5226-
5228. (e) Stinson, S. C. Chem. Eng. News 1998, 76, 6 (22), 15-24. (f) Alonso,
D. A.; Guijarro, D.; Pinho, P.; Temme, O.; Anderson, P. G. J . Org. Chem.
1998, 63, 2749-2751. (g) J iang, Y.; J iang, Q.; Zhang, X. J . Am. Chem. Soc.
1998, 120, 3817-3818. (h) Everaere, K.; Carpenter, J .-F.; Mortreux, A,;
Bulliard, M. Tetrahedron: Asymmetry 1998, 9, 2971-2974.
(6) Crystal structure analysis of 2a ‚H2O: C23H36ClN2O3SRh, Mt ) 558.97,
triclinic, space group P1 (#1), a ) 11.353(2) Å, b ) 13.086(2) Å, c ) 9.123(2)
Å, R ) 92.19(2)°, â ) 93.68(1)°, γ ) 100.93(1)°, V ) 1326.2(4) Å3, Z ) 2, Dc
) 1.40 g/cm3, µ(Mo KR) ) 8.48 cm-1, R (Rw) ) 0.040 (0.043) for 5574 observed
reflections (I > 3.00σ(I)). 4a ‚H2O: C23H36ClN2O3SIr, Mt ) 648.28, triclinic,
space group P1 (#1), a ) 11.365(4) Å, b ) 13.042(7) Å, c ) 9.162(4) Å, R )
92.07(5)°, â ) 93.99(4)°, γ ) 100.85(4)°, V ) 1328(1) Å3, Z ) 2, Dc ) 1.62
g/cm3, µ(Mo KR) ) 52.41 cm-1, R (Rw) ) 0.062 (0.065) for 5167 observed
reflections (I > 3.00σ(I)). After submission of this paper, a report from Tani
describing related work on TsDPEN complexes of Rh and Ir appeared.
Mashima, K.; Abe, T.; Tani, K. Chem. Lett.1998, 1199-1200.
(1) Noyori, R. Asymmetric Catalysis in Organic Synthesis; J ohn Wiley
& Sons: New York, 1994; Chapter 2.
(2) (a) Mu¨ller, D.; Umbricht, G.: Weber, B.; Pfaltz, A. Helv. Chim. Acta
1991, 74, 232-240. (b) Chowdhury, R. L.; Ba¨ckvall, J .-E. J . Chem. Soc.,
Chem. Commun. 1991, 1063-1064. (c) Zassinovich, G.; Mestroni, G. Chem.
Rev. 1992, 92, 1051-1069. (d) Gamez, P.; Fache, F.; Mangeney, P.; Lemaire,
M. Tetrahedron Lett. 1993, 34, 6897-6898. (e) Geneˆt, J .-P.; Ratovelo-
manana-Vidal, V.; Pinel, C. Synlett 1993, 478-480. (f) Evans, D. A.; Nelson,
S. G.; Gagne´, M. R.; Muci, A. R. J . Am. Chem. Soc. 1993, 115, 9800-9801.
(g) Gamez, P.; Fache, F.; Lemaire, M. Tetrahedron: Asymmetry 1995, 6,
705-718. (h) Langer, T.; Helmchen, G. Tetrahedron Lett. 1996, 37, 1381-
1384. (i) J iang, Y.; J iang, Q.; Zhu, G.; Zhang, X. Tetrahedron Lett. 1997,
38, 215-218. (j) J iang, Q.; Plew, D. V.; Murtuza, S.; Zhang, X. Tetrahedron
Lett. 1997, 37, 797-800. (k) Touchard, F.; Gamez, P.; Fache, F.; Lemaire,
M. Tetrahedron Lett. 1997, 38, 2275-2278. (l) Barbaro, P.; Bianchini, C.;
Togni, A. Organometallics 1997, 16, 3004-3014. (m) Sammakia, T.;
Stangeland, E. L. J . Org. Chem. 1997, 62, 6104-6105.
(3) (a) Hashiguchi, S.; Fujii, A.; Takehara, J .; Ikariya, T.; Noyori, R. J .
Am. Chem. Soc. 1995, 117, 7562-7563. (b) Takehara, J .; Hashiguchi, S.;
Fujii, A.; Inoue, S.; Ikariya, T.; Noyori, R. J . Chem. Soc., Chem. Commun.
1996, 233-234. (c) Gao, J .-X.; Ikariya, T.; Noyori, R. Organometallics 1996,
15, 1087-1089. (d) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.;
Noyori, R. J . Am. Chem. Soc. 1996, 118, 2521-2522. (e) Uematsu, N.; Fujii,
A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J . Am. Chem. Soc. 1996, 118,
4916-4917. (f) Haack, K.-J .; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori,
R. Angew. Chem., Int. Ed. Engl. 1997, 36, 285-288. (g) Hashiguchi, S.; Fujii,
A.; Haack, K.-J .; Matsumura, K.; Ikariya, T.; Noyori, R. Angew. Chem., Int.
Ed. Engl. 1997, 36, 288-290. (h) Matsumura, K.; Hashiguchi, S.; Ikariya,
T.; Noyori, R. J . Am. Chem. Soc. 1997, 119, 8738-8739. (i) Noyori, R.;
Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97-102.
10.1021/jo990213a CCC: $18.00 © 1999 American Chemical Society
Published on Web 03/12/1999