Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
DOI: 10.1039/C9CC05008F
Science Foundation (2192025) and Natural Science Foundation
of China (21272027).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
P. R. Crocker, J. C. Paulson and A. Varki, Nat. Rev. Immunol.,
2007, 7, 255.
2
3
A. Varki, Nature, 2007, 446, 1023.
Fig. 3 Fluorescence confocal images of HeLa cells incubated with TPE3S (50 μM) and
commercial dye DiD (DiD is a membrane probe). Left panel is the confocal image from
TPE3S on channel 1 (λex = 405 nm, λem = 440-540 nm); Middle panel is the confocal image
from DiD on channel 2 (λex = 635 nm, λem = 650-750 nm). Scale bars = 10 μm.
M. S. Macauley, P. R. Crocker and J. C. Paulson, Nat. Rev.
Immunol., 2014, 14, 653.
4
5
6
7
Q. Lu, G. Lu, J. Qi, H. Wang, Y. Xuan, Q. Wang, Y. Li, Y. Zhang,
C. Zheng, Z. Fan, J. Yan and G. F. Gao, Proc. Natl. Acad. Sci.,
2014, 111, 8221.
K. Ohnishi, Y. Komohara, Y. Saito, Y. Miyamoto, M.
Watanabe, H. Baba and M. Takeya, Cancer Sci., 2013, 104,
1237.
D. Y. Mason, H. Stein, J. Gerdes, K. A. Pulford, E. Ralfkiaer, B.
Falini, W. N. Erber, K. Micklem and K. C. Gatter, Blood, 1987,
69, 836.
E. M. Bradshaw, L. B. Chibnik, B. T. Keenan, L. Ottoboni, T.
Raj, A. Tang, L. L. Rosenkrantz, S. Imboywa, M. Lee, A. Von
Korff, I. The Alzheimer Disease Neuroimaging, M. C. Morris,
D. A. Evans, K. Johnson, R. A. Sperling, J. A. Schneider, D. A.
Bennett and P. L. De Jager, Nat. Neurosci., 2013, 16, 848.
S. a. Mizrahi, B. F. Gibbs, L. Karra, M. Ben-Zimra and F. Levi-
Schaffer, J. Allergy Clin. Immun., 2014, 134, 230.
C. D. Rillahan, M. S. Macauley, E. Schwartz, Y. He, R. McBride,
B. M. Arlian, J. Rangarajan, V. V. Fokin and J. C. Paulson,
Chem. Sci., 2014, 5, 2398.
bright fluorescence images of Siglecs due to the AIE
characteristics. Aimed to build a novel platform that could
sensitively image Siglecs and sialidases using TPE3S and TPE4S
respectively, the biocompatibility and toxicity of TPE3S and
TPE4S were evaluated by MTT method. The data indicated that
there were no significant differences in cell viability between
the initial and that after incubation for 24 h, suggesting the low-
toxicity of the sialyl derivatives used in this study (Fig. S7).
To further validate the efficiency of TPE3S for the detection
of Siglecs expressed on the surface of mammalian cells, similar
experiments were subsequently conducted using cervical
cancer HeLa cells. Interestingly, colocalization experiments
performed using DiD as control revealed that TPE3S principally
enriched on the membrane of HeLa cells discretely after
incubation for 5 hours (Fig. 3). Even after incubation with TPE3S
for 24 hours, TPE3S still “shine” on the DiD membrane probe.
The observed intense emission of TPE3S presented on HeLa
cells further indicated that the specific binding between TPE3S
and Siglecs. Therefore, TPE3S could be used to target Siglec-
expressing cells and to visualize Siglecs efficiently.
In conclusion, we described an AIE-active binding-on
fluorescent Siglec-targeting sialocluster (TPE3S) consisting of
multivalent sialic acid moieties. TPE3S was equipped via click
coupling reactions of alkynyl terminated pentaerythritol, azide-
annexed TPE and sialic acids. The specificity of TPE3S toward
Siglec-2, -3 and -5 was determined using MST technique which
was suitable for the analysis of various binders. The contrast
experiments with TPE1S and TPE4S suggested that both the
number of sialic acid moieties and their spatial arrangement
were indispensable for the promising capability of TPE3S
toward Siglecs. Furthermore, TPE3S was used for the
visualization of Siglecs expressed on the surface of PC-12 and
HeLa cells successfully. However, TPE4S with lower affinity for
Siglecs but being high sensitive for sialidase has been shown to
be useful in imaging cellular sialidase with satisfactory
biocompatibility. In addition, in comparison with the antibodies
against Siglecs, TPE3S was a broad-spectrum ligand for most
Siglecs with relatively low specificity and affinity. Further
development of high-affinity ligands for individual Siglec
members by chemical modifications of the sialic acid backbone
is in progress.
8
9
10 C. L. Schofield, M. J. Marín, M. Rejzek, P. R. Crocker, R. A.
Field and D. A. Russell, Analyst, 2016, 141, 5799.
11 O. Blixt, S. Han, L. Liao, Y. Zeng, J. Hoffmann, S. Futakawa and
J. C. Paulson, J. Am. Chem. Soc., 2008, 130, 6680.
12 C. M. Nycholat, C. Rademacher, N. Kawasaki and J. C.
Paulson, J. Am. Chem. Soc., 2012, 134, 15696.
13 S. Ohira, Y. Yasuda, I. Tomita, K. Kitajima, T. Takahashi, C.
Sato and H. Tanaka, Chem. Commun., 2017, 53, 553.
14 O. Kurmyshkina, E. Rapoport, E. Moiseeva, E. Korchagina, T.
Ovchinnikova, G. Pazynina, I. Belyanchikov and N. Bovin,
Acta Histochem., 2010, 112, 118.
15 X.-t. Zhang, Z.-y. Gu, L. Liu, S. Wang and G.-w. Xing, Chem.
Commun., 2015, 51, 8606.
16 X. Kang, S. Wang and M. Zhu, Chem. Sci., 2018, 9, 3062.
17 J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam and B. Z.
Tang, Chem. Rev., 2015, 115, 11718.
18 M. Jerabek-Willemsen, C. J. Wienken, D. Braun, P. Baaske
and S. Duhr, Assay Drug Dev. Techn., 2011, 9, 342-353.
19 C. Zhang, S. Jin, K. Yang, X. Xue, Z. Li, Y. Jiang, W.-Q. Chen, L.
Dai, G. Zou and X.-J. Liang, ACS Appl. Mater. Interfaces, 2014,
6, 8971.
20 G.-j. Liu, X.-t. Zhang and G.-w. Xing, Chem. Commun., 2015,
51, 12803.
21 G.-J. Liu, C.-Y. Li, X.-T. Zhang, W. Du, Z.-Y. Gu and G.-W. Xing,
Chin. Chem. Lett. , 2018, 29, 1.
22 C. Büll, T. Heise, G. J. Adema and T. J. Boltje, Trends Biochem.
Sci., 2016, 41, 519.
23 G.-j. Liu, B. Wang, Y. Zhang, G.-w. Xing, X. Yang and S. Wang,
Chem. Commun., 2018, 54, 10691.
24 C.-S. Tsai, H.-Y. Yen, M.-I. Lin, T.-I. Tsai, S.-Y. Wang, W.-I.
Huang, T.-L. Hsu, Y.-S. E. Cheng, J.-M. Fang and C.-H. Wong,
Proc. Natl. Acad. Sci., 2013, 110, 2466.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins