Organic & Biomolecular Chemistry
Communication
showed inhibition against Bacillus subtilis at 12.5 μM
(Fig. S8†). Most notably, 1 exhibits significant antifungal activi-
ties against Botrytis cinerea and Alternaria solani (Fig. S8 and
Table S8†). The IC50 value of antifungal activity was 10.0 µg
mL−1 (15.6 µM) against A. solani (Fig. S8†).
3 E. S. Sattely, M. A. Fischbach and C. T. Walsh, Nat. Prod.
Rep., 2008, 25, 757–793.
4 J. S. Dickschat, Nat. Prod. Rep., 2016, 33, 87–110.
5 D. Schwarzer, R. Finking and M. A. Marahiel, Nat. Prod.
Rep., 2003, 20, 275–287.
6 X. Wang, X. Gong, P. Li, D. Lai and L. Zhou, Molecules,
2018, 23, 169–217.
7 T. Sasaki, M. Takagi, T. Yaguchi, S. Miyadoh, T. Okada and
M. Koyama, J. Antibiot., 1992, 45, 692–697.
8 S. Firáková, B. Proksa and M. Sturdíkova, Pharmazie, 2007,
62, 563–568.
9 B. Wang, Q. Kang, Y. Lu, L. Bai and C. Wang, Proc. Natl.
Acad. Sci. U. S. A., 2012, 109, 1287–1292.
10 Y. Xu, J. Zhan, E. M. Wijeratne, A. M. Burns,
A. A. Gunatilaka and I. Molnár, J. Nat. Prod., 2007, 70,
1467–1471.
11 A. Pohanka, K. Capieau, A. Broberg, J. Stenlid, E. Stenström
and L. Kenne, J. Nat. Prod., 2004, 67, 851–857.
12 H. S. Lee, H. H. Song, J. H. Jeong, C. G. Shin, S. U. Choi
and C. Lee, Toxicon, 2008, 51, 1178–1185.
13 J. Tian, J. J. Han, X. Zhang, L. W. He, Y. J. Zhang, L. Bao
and H. W. Liu, Chem. Biodivers., 2016, 13, 852–860.
14 M. Isaka, A. Yangchum, M. Sappan, R. Suvannakad and
P. Srikitikulchai, Tetrahedron, 2011, 67, 7929–7935.
15 Y. M. Chiang, E. Szewczyk, T. Nayak, A. D. Davidson,
J. F. Sanchez, H. C. Lo, W. Y. Ho, H. Simityan, E. Kuo,
A. Praseuth, K. Watanabe, B. R. Oakley and C. C. Wang,
Chem. Biol., 2008, 15, 527–532.
Conclusions
To summarize, we identified two NRPS BGCs responsible for
the biosynthesis of CDPs by bioinformatics analysis and gene
deletion experiments in A. guana. LC-MS analysis showed that
A. guana could produce many high molecular weight com-
pounds which contain many CDPs. In this study, we have
identified eight CDPs, including one new CDP isaridin H (1)
and seven known analogs. The structure of new CDP was
identified by NMR, Mafey’s method and LC-ESI-MS/MS. In
addition, the new CDP isaridin H (1) was found to have anti-
fungal activity against several phytopathogens. Furthermore,
we proposed a biosynthetic model for the new CDP isaridin H
(1) according to the domain organisations of AG06652 and
AG03264 (Fig. S9†). Since neither of the two non-ribosomal
peptide synthases individually recognizes all assembled amino
acids according to A domain specificities, it is not clear
whether the two enzymes perform assembly functions
together.37 These isolated CDPs indicate that A. guana has
great potential to mine novel SMs. Our data also provide
insights into the biosynthetic origin of CDPs (isaridins and
isariins) in Amphichorda. It is worth noting that the discovery
of new active CDPs could accelerate the development of these
important molecules for agricultural and pharmacological
applications.
16 Y. Shiono, M. Tsuchinari, K. Shimanuki, T. Miyajima,
T. Murayama, T. Koseki, H. Laatsch, T. Funakoshi,
K. Takanami and K. Suzuki, J. Antibiot., 2007, 60, 309–
316.
17 G. Ravindra, R. S. Ranganayaki, S. Raghothama,
M. C. Srinivasan, R. D. Gilardi, I. L. Karle and P. Balaram,
Chem. Biodivers., 2004, 1, 489–504.
18 R. Baute, G. Deffieux, D. Merlet, M. A. Baute and A. Neveu,
J. Antibiot., 1981, 34, 1261–1265.
Conflicts of interest
There are no conflicts to declare.
19 K. A. Seifert and W. Gams, Persoonia, 2011, 27, 119–129.
20 A. Langenfeld, A. Blond, S. Gueye, P. Herson, B. Nay,
J. Dupont and S. Prado, J. Nat. Prod., 2011, 74, 825–830.
21 Z. F. Zhang, F. Liu, X. Zhou, X. Z. Liu, S. J. Liu and L. Cai,
Persoonia, 2017, 39, 1–31.
22 L. Xu, Y. Li, J. B. Biggins, B. R. Bowman, G. L. Verdine,
J. B. Gloer, J. A. Alspaugh and G. F. Bills, Appl. Microbiol.
Biotechnol., 2018, 102, 2337–2350.
23 Y. X. Guo, Q. H. Liu, T. B. Ng and H. X. Wang, Peptides,
2005, 26, 2384–2391.
24 V. Sabareesh, R. S. Ranganayaki, S. Raghothama,
M. P. Bopanna, H. Balaram, M. C. Srinivasan and
P. Balaram, J. Nat. Prod., 2007, 70, 715–729.
Acknowledgements
We would like to thank Drs Jinwei Ren and Wenzhao Wang
(Institute of Microbiology, CAS) for NMR, and MS data collec-
tion. This work was supported by the National Key Research
and Development Program of China (2018YFA0901901), the
National Natural Science Foundation of China (81872771),
the Key Research Program of Frontier Sciences, CAS
(ZDBS-LY-SM016) and the Construction of the Registry and
Database of Bioparts for Synthetic Biology, CAS (ZSYS-016).
25 F. Ishikawa and G. Tanabe, ChemBioChem, 2019, 20, 2032–
2040.
Notes and references
1 L. Katz and R. H. Baltz, J. Ind. Microbiol. Biotechnol., 2016, 26 A. Jegorov, P. Sedmera and V. Matha, Phytochemistry, 1993,
43, 155–176. 33, 1403.
2 M. Singh, S. Chaudhary and D. Sareen, J. Biosci., 2017, 42, 27 L. C. Vining and W. A. Taber, Can. J. Chem., 1962, 40,
175–187.
1579–1584.
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 1960–1964 | 1963