European Journal of Organic Chemistry
10.1002/ejoc.201700772
SHORT COMMUNICATION
central secondary diamine were smoothly converted to the
desired ligands L1-L12 (Scheme 6). Thus, all target compounds
were easily produced in gram quantities.
Keywords: ligand synthesis • amines • tetramines • reductive
amination • catalysis
[
1]
(a) R. H. Crabtree, The Organometallic Chemistry of the Transition
Metals, Wiley, 6th edition, 2014. (b) M. N. Zafar, A. H. Atif, M. F. Nazar,
S. H. Sumrra Gul-E-Saba, R. Paracha, Russ. J. Coord. Chem. 2016,
4
2, 1–18 and references cited therein.
(a) F. Fache, E. Schulz, M. L. Tommasino, M. Lemaire, Chem. Rev.
000, 100, 2159–2231. (b) M. HechavarrÌa Fonseca, B. König, Adv.
[
[
2]
3]
2
Synth. Catal. 2003, 345, 1173–1185.
For reviews see: (a) M. Costas, K. Chen, L. Que, Jr., Coord. Chem.
Rev. 2000, 200-202, 517–544. (b) J. E. Bäckvall, Modern Oxidation
Methods, Wiley-VCH, Weinheim, 2004. (c) M. Costas, M. P. Mehn, M.
P. Jensen, L. Que, Jr., Chem. Rev. 2004, 104, 939–986. (d) E. Y.
Tshuva, S. J. Lippard, Chem. Rev. 2004, 104, 987–1012. (e) G. Dyker,
Handbook of C-H Transformations, Vol. 1–2, Wiley-VCH, Weinheim,
2005. (f) A. E. Shilov, G. B. Shul’pin, Activation and Catalytic Reactions
of Saturated Hydrocarbons in the Presence of Metal Complexes,
Springer-Verlag, Boston, 2005. (g) A. R. Dick, M. S. Sanford,
Tetrahedron 2006, 62, 2439–2463. (h) L. Que, Jr., Acc. Chem. Res.
2
007, 40, 493–500. (i) W. Nam, Acc. Chem. Res. 2007, 40, 522–531.
j) S. Shaik, H. Hirao, Acc. Chem. Res. 2007, 40, 532–542. (k) A.
Correa, O. García-Mancheno, C. Bolm, Chem. Soc. Rev. 2008, 37,
108–1117. (l) L. Que Jr., W. B. Tolman, Nature 2008, 455, 333–340.
m) M. Christmann, Angew. Chem. 2008, 120, 2780–2783; Angew.
(
1
(
Chem. Int. Ed. 2008, 47, 2740–2742. (n) A. C. Mayer, C. Bolm, S.
Laschat, V. Rabe, A. Baro, O. García-Mancheno (2008), Iron-Catalyzed
Oxidation Reactions, in Iron Catalysis in Organic Chemistry: Reactions
and Applications (ed. B. Plietker), Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany. (o) C.-L. Sun, B.-J. Li, Z.-J.; Shi, Chem.
Rev. 2011, 111, 1293–1314. (p) L. McMurray, F. O’Hara, M. J. Gaunt,
Chem. Soc. Rev. 2011, 40, 1885–1898. (q) K. Schröder, K. Junge, B.
Bitterlich, M. Beller, Top. Organomet. Chem. 2011, 33, 83–109.
Scheme 6. Reductive amination of the central diamine and final product
structures.
[
4]
5]
H. Toftlund, E. Pedersen, S. Yde-Andersen, Acta Chem. Scand. A 1984,
3
8, 693–697.
T. Okuno, S. Ito, Y. Nishida, J. Chem. Soc. Dalton Trans. 1997, 3547–
551. See also: R. E. Norman, S. Yan, L. Que, Jr., G. Backes, J. Ling,
J. Sanders-Loehr, J. H. Zhang, C. J. O’Connor, J. Am. Chem. Soc.
990, 112, 1554–1562.
M. C. White, A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc. 2001,
23, 7194–7195.
[
3
Conclusions
1
In summary, we have developed a straightforward and highly
efficient modular approach for the synthesis of tetramine ligands
using a double reductive amination sequence. Thus, a central
diamine containing two terminal primary amino groups was
condensed with two equivalents of a 2-carbonyl substituted
pyridine derivative to yield a crystalline diimine intermediate.
Precipitation of this intermediate was crucial in order to obtain
high yields for the subsequent borohydride reduction. In the
case of prochiral diimines a high diastereoselectivity in favor for
[
6]
7]
1
[
For other key publications in the area of ligand-stabilized iron catalyzed
epoxidations, see: (a) W. Nam, R. Ho, J. S. Valentine, J. Am. Chem.
Soc. 1991, 113, 7052–7054. (b) M. B. Francis, E. N. Jacobsen, Angew.
Chem. 1999, 111, 987–991; Angew. Chem. Int. Ed. 1999, 38, 937–941.
(c) S. J. Lippard, J. Am. Chem. Soc. 2001, 123, 1794–1795. (d) F. G.
Gelalcha, B. Bitterlich, B. Anilkumar, M. K. Tse, M. Beller, Angew.
Chem. 2007, 119, 7431–7435; Angew. Chem. Int. Ed. 2007, 46, 7293–
7
296. (e) R. Mas-Ballesté, L. Que, Jr., J. Am. Chem. Soc. 2007, 129,
5964–15972. (f) C. Marchi-Delapierre, A. Jorge-Robin, A. Thibon, S.
2
the C -symmetric isomer was observed. A model to explain the
1
stereoselectivity has been provided. Finally, the resulting
products were then selectively methylated at the central diamine
unit, again using a reductive amination. All three steps of this
sequence are easily scalable and allow to prepare multi gram
quantities of the target compounds. Notably, only a single
chromatographic purification was required at the end of the three
synthetic transformations and intermediates were usually
purified through re-crystallization.
Ménage, Chem. Commun. 2007, 1166–1168. (g) S. Enthaler, K. Junge,
M. Beller, Angew. Chem. 2008, 120, 3363–3367; Angew. Chem. Int. Ed.
2008, 47, 3317–3321. (h) H.-L. Yeung, K.-C. Sham, C.-S. Tsang, T.-C.
Lau, H.-L. Kwong, Chem. Commun. 2008, 3801–3803. (i) M.
Ostermeier, C. Limberg, C. Herwig, B. Ziemer, Z. Anorg. Allg. Chem.
2009, 635, 1823–1830. (j) E. Weber, D. Sirim, T. Schreiber, B. Thomas,
J. Pleiss, M.J. Hunger, Mol. Cat. B: Enzym. 2010, 64, 29–37. (k) Y.
Nishikawa, H. J. Yamamoto, J. Am. Chem. Soc. 2011, 133, 8432–8435.
(l) M. Wu, C.-X. Miao, S. Wang, X. Hu, C. Xia, F. E. Kühn, W. Sun, Adv.
Synth. Catal. 2011, 353, 3014–3022. (m) K. Hasan, N. Brown, C. M.
Kozak, Green Chem. 2011, 13, 1230–1237. (n) P. Liu, Y. Liu, E. L.-M.
Wong, S. Xiang, C.-M. Che, Chem. Sci. 2011, 2, 2187–2195. (o) D.
Clemente-Tejeda, A. López-Moreno, F. A. Bermejo, Tetrahedron 2013,
Acknowledgements
6
9, 2977–2986. (p) V. A. Yazerski, P. Spannring, D. Gatineau, C. H. M.
Generous support of this research by Fonds der Chemischen
Industrie (FCI) is gratefully acknowledged. We also thank Dr.
Julian Thimm, and Dr. Ilia Guzei for helpful discussions.
Woerde, S. M. Wieclawska, M. Lutz, H. Kleijn, R. J. M. Klein Gebbink,
Org. Biomol. Chem. 2014, 12, 2062–2070. (q) T. Chishiro, Y. Kon, T.
Nakashima, M. Goto, K. Sato, Adv. Synth. Catal. 2014, 356, 623–627.
[
9] For selected references, see: (a) C. Kim, K. Chen, J. Kim, L. Que, Jr., J.
Am. Chem. Soc. 1997, 119, 5964–5965. (b) K. Neimann, R. Neumann,
A. Rabion, R. M. Buchanan, R. H. Fish, Inorg. Chem. 1999, 38, 3575–
This article is protected by copyright. All rights reserved.