(salen), 1, promoted alkynylation of ketones with moderate
enantioselectivities as a pioneering study.4 He considered that
the success of this addition ascribed to the salen-metal
complex which could behave as a bifunctional Lewis acid-
Lewis base catalyst. In the same year, Chan and co-workers
described the alkynylzinc addition to ketones with very high
ee values in the presence of chiral camphorsulfonamide
ligand 2 and a stronger Lewis acid Cu(OTf)2.5 Almost at the
same time, Cozzi6 and we7d developed an asymmetric
addition of alkynylation of ketones in the presence of BINOL
3 and Ti (Figure 1). We found the 1:1 ratio of BIONL/Ti
with high ee values and good yields in low loading of the
ligand, and to the best of our knowledge, 1 mol % was the
lowest amount reported in this reaction.
It is well-known that alkyl2Zn does not react with simple
ketones without another Lewis acid’s assistance because of
the low activity of the carbonyl in ketones. Recently, Cozzi
reported that MeZnCtCPh could be directly added to the
simple ketones without a ligand (Scheme 1).8 It was because
Scheme 1. Alkynylation of Ketones in the Presence of
Alkynylzinc
the electron-withdrawing nature of the alkynyl affected
the zinc center in MeZnCtCPh, thus increasing the polarity
of the C-Zn bond and the Lewis acidity of the metal to a
great extent. This kind of zinc complex has enough Lewis
acidity to activate the carbonyl group in the ketone.
Therefore, it can make this kind of addition work success-
fully. On the basis of the facts mentioned above, we
attempted to perform the enantioselective addition of phe-
nylacetylene to ketones without adding any other stronger
Lewis acid except zinc.
The Schiff-base amino alcohols9 were easily prepared from
L-phenylglycine in three simple steps with overall yields of
up to 70% and 73%, respectively (Scheme 2). At first, 5
mol % of 7a and 7b was employed in the asymmetric
addition of phenylacetylene to acetophenone in the presence
of diethylzinc. The reaction was completed in 14 h at room
temperature. Ligand 7b which has a much bulkier substitute
gave a better result. Then, the solvent effect on this process
using 7b was probed. Low enantioselectivity and a slow
reaction time were found in CH2Cl2. Hexane gave the best
ee and yield. In the reaction, we found that the ligand was
not completely dissolved in hexane, and perhaps, a smaller
amount of ligand could serve as a catalyst with the same
result. Therefore, we attempted to decrease the loading of
the ligand to 1 mol %. To our surprise, the ee was up to
Figure 1. Structure of ligands for the asymmetric addition of
alkynylation of ketones.
was necessary for a stronger Lewis acid. Although advances
have been achieved, high loadings of ligands (usually 20
mol %) had to be used to achieve good to excellent
enantioselectivities. Therefore, we report here an example
of a highly efficient chiral ligand which could catalyze the
enantioselective addition of alkynylzinc to simple ketones
(3) Selected references on the enantioselective organozinc addition to
ketones: (a) Ramo´n, D. J.; Yus, M. Angew. Chem., Int. Ed. 2004, 43, 284.
(b) Betancort, J. M.; Garc´ıa, C.; Walsh, P. J. Synlett 2004, 749. (c) Dosa,
P. I.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 445. (d) Ramo´n, D. J.; Yus,
M. Tetrahedron Lett. 1998, 39, 1239. (e) Ramo´n, D. J.; Yus, M. Tetrahedron
1998, 54, 5651. (f) Garc´ıa, C.; LaRochelle, L. K.; Walsh, P. J. J. Am. Chem.
Soc. 2002, 124, 10970. (g) Jeon, S.-J.; Walsh, P. J. J. Am. Chem. Soc. 2003,
125, 9544. (h) Garc´ıa, C.; Walsh, P. J. J. Org. Chem. 2003, 68, 3641. (i)
Li, H.; Garc´ıa, C.; Walsh, P. J. Proc. Natl. Acad. Sci. 2004, 101, 5425. (j)
Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538. (k) Jeon, S.-J.; Li,
H.; Garc´ıa, C.; LaRochelle, L. K.; Walsh, P. J. J. Org. Chem. 2005, 70,
448. (l) Saito, B.; Katsuki, T. Synlett 2004, 1557.
(8) Cozzi, P. G.; Rudolph, J.; Bolm, C.; Norrby, P. O.; Tomasini, C. J.
Org. Chem. 2005, 70, 5733.
(9) Selected references for the salen-schiff base as chiral catalysts: (a)
DiMauro, E. F.; Kozlowski, M. C. J. Am. Chem. Soc. 2002, 124, 12668-
12669. (b) DiMauro, E. F.; Kozlowski, M. C. Org. Lett. 2002, 4, 3781-
3784. (c) Li, Z. B.; Pu, L. Org. Lett. 2004, 6, 1065-1068. (d) Dahmen, S.
Org. Lett. 2004, 6, 2113-2116. (e) Nagata, T.; Yorozu, K.; Yamada, T.;
Mukaiyama, T. Angew. Chem., Int. Ed. Engl. 1995, 34, 2145. (f) Belokon,
Y. R.; Caveda-Cepas, S.; Green, B.; Ikonnikov, N. S.; Khrustalev, V. N.;
Larichev, V. S.; Moscalenko, M. A.; North, M.; Orizu, C.; Tararov, V. I.;
Tasinazzo, M.; Timofeeva, G. I.; Yashkina, L. V. J. Am. Chem. Soc. 1999,
121, 3968-3971. (g) Belokon, Y. R.; North, M.; Parsons, T. Org. Lett.
2000, 2, 1617. (h) Cameron, P. A.; Gibson, V. C.; Irvine, D. J. Angew.
Chem., Int. Ed. 2000, 39, 2141-2144. (i) Shimizu, K. D.; Cole, B. M.;
Krueger, C. A.; Kuntz, K.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 1704. (j) Yun, H. Y.; Wu, Y. J.; Wu, K. L.; Zhou,
D. Y. Tetrahedron Lett. 2000, 41, 10263-10266. (k) Taylor, M. S.; Zalatan,
D. N.; Lerchner, A. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127,
1313-1317.
(4) Cozzi, P. G. Angew. Chem., Int. Ed. 2003, 42, 2895.
(5) Lu, G.; Li, X. S.; Jia, X.; Chan, W. L.; Chan, A. S. C. Angew. Chem.,
Int. Ed. 2003, 42, 5057.
(6) Cozzi, P. G.; Alesi, S. Chem. Commun. 2004, 2448.
(7) Selected recent examples of our group: (a) Xu, Z. Q.; Wang, R.;
Xu, J. K.; Da, C. S.; Yan, W. J.; Chen, C. Angew. Chem., Int. Ed. 2003,
42, 5747. (b) Xu, Z. Q.; Chen, C.; Xu, J. K.; Miao, M. B.; Yan, W. J.;
Wang, R. Org. Lett. 2004, 6, 1193. (c) Kang, Y. F.; Liu, L.; Wang, R.;
Zhou, Y. F.; Yan, W. J. AdV. Synth. Catal. 2005, 347, 243. (d) Zhou, Y.
F.; Wang, R.; Xu, Z. Q.; Yan, W. J.; Liu, L.; Kang, Y. F.; Han, Z. J. Org.
Lett. 2004, 6, 4147. (e) Ni, M.; Wang, R.; Han, Z. J.; Mao, B.; Da, C. S.;
Liu, L.; Chen, C. AdV. Synth. Catal. 2005, 347, 1659. (f) Liu, L.; Wang,
R.; Kang, Y. F.; Chen, C.; Xu, Z. Q.; Zhou, Y. F.; Ni, M.; Cai, H. Q.;
Gong, M. Z. J. Org. Chem. 2005, 70, 1084.
2278
Org. Lett., Vol. 8, No. 11, 2006