10.1002/chem.202004345
Chemistry - A European Journal
COMMUNICATION
[5]
(a) Q. Yang, Q. Xu, H.-L. Jiang, Chem. Soc. Rev. 2017, 46, 4774-
4808; (b) C. Rösler, S. Dissegna, V. L. Rechac, M. Kauer, P. Guo, S.
Turner, K. Ollegott, H. Kobayashi, T. Yamamoto, D. Peeters, Y. Wang,
S. Matsumura, G. van Tendeloo, H. Kitagawa, M. Muhler, F. X. Llabrés
I Xamena, R. A. Fischer, Chem.Eur. J. 2017, 23, 3583–3594; (c) C.
Rösler, R. A. Fischer, CrystEngComm. 2015, 17, 199–217; (d) V. R.
Bakuru, S. B. Kalidindi, Chem. Eur. J. 2017, 23, 16456; (e) D. Chen, W.
Yang, L. Jiao, L. Li, S. H. Yu, H. L. Jiang, Adv. Mat. 2020, 32,
2000041; (f) L. Li, W. Yang, Q. Yang, Q. Guan, J. Lu, S. H. Yu, H. L.
Jiang, ACS Catal. 2020, 10, 7753-7762; (g) Y. Z. Chen, B. Gu, T.
Uchida, J. Liu, X. Liu, B. J. Ye, Q. Xu, H. L. Jiang, Nat. comm. 2019, 10,
1-10; (h) J.D. Xiao, L. Han, J. Luo, S.H. Yu, H. L. Jiang, Angew. Chem.
Int. Edit. 2018, 57, 1103-1107.
In summary, we have demonstrated the facile synthesis of
a nanocomposite hydrogel (Pd@ZIF-8+LP) by charge-assisted
self-assembly of Pd@ZIF-8 NPs with LPs nanoclay. In Pd@ZIF-
8+LP, the wrapping of LP layers over Pd@ZIF-8 NPs not only
enhances its thermal stability but also introduces fine-tuning on
size-selective diffusion of substrates, leading to selectivity in
hydrogenation catalysis. The Pd@ZIF-8+LP is quite stable and
maintained significant activity up to four cycles, no considerable
change in the conversion of 1-hexene was observed. Overall,
the demonstrated results suggest that the versatility of the
metal@MOF+clay nanocomposite materials for fine-tuning size-
selective catalysis and this kind of approach stimulates further
research in this direction.
[6]
[7]
M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z.
Tang, Nature, 2016, 539, 76- 80.
(a) M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo, R.
A. Fischer, Eur. J. Inorg. Chem. 2010, 3701–3714; (b) V. R. Bakuru, B.
Velaga, N. R. Peela, S. B. Kalidindi, Chem. Eur. J. 2018, 24, 15978–
15982; (c) H. Q. Wu, L. Huang, J. Q. Li, A. M. Zheng, Y. Tao, L. X.
Yang, W. H. Yin, F. Luo, Inorg. Chem. 2018, 57, 12444–12447; (d) M.
Zhao, K. Deng, L. He, Y. Liu, G. Li, H. Zhao, Z. Tang, J. Am. Chem.
Soc. 2014, 136, 1738−1741; (e) K. M. Choi, K. Na, G. A. Somorjai, O.
M. Yaghi, J. Am. Chem. Soc. 2015, 137, 7810–7816.; (f) Y. Chen, O.
Sakata, Y. Nanba, L. S. R. Kumara, A. Yang, C. Song, M. Koyama, G.
Li, H. Kobayashi, H. Kitagawa, Comm. Chem. 2018, 1, 61; (g) P. Hu, J.
V. Morabito, C. K. Tsung, ACS Catal. 2014, 4, 4409–4419; (h) V. R.
Bakuru, D. Davis, S. B. Kalidindi, Dalt. Trans. 2019, 48, 8573-8577; (i)
H. Kobayashi, Y. Mitsuka, H. Kitagawa, Inorg. Chem. 2016, 55, 7301–
7310; (j) Y. Jiang, X. Zhang, X. Dai, Q. Sheng, H. Zhuo, J. Yong, Y.
Wang, K. Yu, L. Yu, C. Luan, H. Wang, Y. Zhu, X. Duan, P. Che, Chem.
Mater. 2017, 29, 6336–6345; (k) Q. Yang, Q. Xu, S.-H. Yu, H.-L Jiang,
Angew. Chem. Int. Ed. 2016, 55, 3685–3689.
Acknowledgements
PS is thankful to the Council of Scientific and Industrial
Research (CSIR). BVR thanks to DST and TRC-JNC/4612 for
providing fellowship. SBK thanks DST-inspire for the grant (IFA-
12/CH-166). TKM is grateful to the DST (SERB, DST, project no.
CRG/2019/005951), Govt. of India, and the JNCASR for
financial support.
Keywords:
•Metal-Organic
Frameworks
(MOFs)
•Nanocomposite hydrogel • Catalysis • Selective hydrogenation
[1] (a) S. Li, F. Huo, Nanoscal. 2015, 7, 7482−7501; (b) Q.-L. Zhu, Q. Xu,
Chem. Soc. Rev., 2014, 43, 5468−5512; (c) I. Ahmed, S. H. Jhung,
Mater. Today. 2014, 17, 136−146; (d) X. Lian, Y. Fang, E. Joseph, Q.
Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H. − C. Zhou, Chem. Soc.
Rev. 2017, 46, 3386−3401.
[8]
[9]
G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X.
Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J.
Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, F. Huo, Nat. Chem.
2012, 4, 310–316.
(a) M. Wan, X. Zhang, M. Li, B. Chen, J. Yin, H. Jin, L. Lin, small. 2017,
1701395; (b) H. Yin, J. Choi, A. C. K. Yip, Catal. Today. 2016, 265,
203-209;(c) H. L. Jiang, B. Liu, T. Akita, M. Haruta, H. akurai, Q. Xu, J.
Am. Chem. Soc. 2009, 131, 11302–11303; (d) W. Wang, Y. Li, R.
Zhang, D. He, H. Liu, S. Liao, Catal. Comm. 2011, 12, 875–879;(e) B.
Xia, N. Cao, H. Dai, J. Su, X. Wu, W. Luo, G. Cheng, ChemCatChem.,
2014, 6, 2549–2552; (f) X. Jia, S. Wang, Y. Fan, J. Catal. 2015, 327,
54–57; (g) Q. Liu, Z. X. Low, L. Li, A. Razmjou, K. Wang, J. Yao, H.
Wang, J. Mater. Chem. A. 2013, 1, 11563; (h) P. Z. Li, K. Aranishi, Q.
Xu, Chem. Commun. 2012, 48, 3173–3175; (i) Y. Feng, G. Yan, T.
Wang, W. Jia, X. Zeng, J. Sperry, Y. Sun, X. Tang, T. Lei, L. Lin, Green
Chem., 2019, 21, 4319; (j) F. Pang, M. He, J. Ge, Chem. Eur. J. 2015,
21, 1–10;; (k) T. T. Dang, Y. Zhu, J. S. Ngiam, S. C. Ghosh, A. Chen,
A. M. Seayad, ACS Cat. 2013, 3, 1406-1410; (l) C. J. Stephenson, J. T.
Hupp, O. K. Farha, Inorg. Chem. 2016, 55, 1361–1363.
[2]
(a) R. Kumar, K. Jayaramulu, T. K. Maji, C. N. R. Rao, Chem. Commun.
2013, 49, 4947-4949; (b) L. Yang, B. Tang, P. Wu, J. Mater. Chem. A,
2015, 3, 15838-15842; (c) L. Chen, J. Zhang, X. Zhou, S. Yang, Q.
Zhang, W. Wang, Z. You, C. Peng, C. He, Acta Biomater. 2019, 86,
406–415; (d) X. Yan, X. Hu, S. Komarneni, RSC Adv. 2014, 4, 57501-
57504; (e) T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, T. Uemura, Chem.
Soc. Rev. 2017, 46, 3108—3 133; (f) A. Chakraborty, A. Achari, M.
Eswaramoorthy, T. K. Maji, Chem. Commun. 2016, 52, 11378-11381;
(g) A. Chakraborty, S. Roy, M. Eswaramoorthy, T. K. Maji, J. Mater.
Chem. A, 2017, 5, 8423-8430; (h) P. Wang, H. Li, Q. Gao, P-Z. Li, X.
Yao, L. Bai, K. T. Nguyen, R-Q. Zou, Y. Zhao, J. Mater. Chem. A, 2014,
2, 18731–18735.
[3]
(a) H. L. J. Q. Yang, Q. Xu, Chem. Soc. Rev. 2017, 46, 4774–4808; (b)
L. Zhu, X. Q. Liu, H. L. Jiang, L. B. Sun, Chem. Rev. 2017, 117, 8129–
8176; (c) G. Huang, Q. Yang, Q. Xu, S.-H. Yu, H.-L. Jiang, Angew.
Chem. Int. Ed. 2016, 55, 7379; (d) M. Jahan, Q. Bao, K. P. Loh, J. Am.
Chem. Soc. 2012, 134, 6707-6713; (e) S. Aguado, J. Canivet, D.
Farrusseng, Chem. Commun. 2010, 46, 7999-8001; (f) F. Ke, Y. –P.
Yuan, L. –G. Qiu, Y. –H. Shen, A. –J. Xie, J. –F. Zhu, X. –Y. Tian, L.
–D. Zhang, J. Mater. Chem. 2011, 21, 3843-3848; (g) H. Li, N. Lv, X.
Li, B. Liu, J. Feng, X. Ren, T. Guo, D. Chen, J. F. Stoddart, R.
Gref and J. Zhang, Nanoscale, 2017, 9, 7454-7463; (h) H. –X. Zhao,
Q. Zou, S. –K. Sun, C. Yu, X. Zhang, R. –J. Li, Y. –Y. Fu, Chem. Sci.,
2016, 7, 5294-5301; (i) Y. Liu, L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng
and Z. Tang, Angew. Chemie - Int. Ed. 2013, 52, 3741–3745; (j) S.
Kempahanumakkagari, K. Vellingiri, A. Deep, E. E. Kwon, N. Bolan, K.-
H. Kim, Coord. Chem. Rev. 2018, 357, 105-129.
[10] (a) Q. Yang, F. Yao, Y. Zhong, F. Chen, X. Shu, J. Sun, L. He, B. Wu, K.
Hou, D. Wang, X. Li, Part. Part. Syst. Charact. 2019, 1800557, 1–19;
(b) B. Rungtaweevoranit, J. Baek, J. R. Araujo, B. S. Archanjo, K. M.
Choi, O. M. Yagh,I G. A. Somorjai, Nano Lett. 2016, 16, 7645–7649; (c)
Z. Li, A. W. Peters, A. E. P. Prats, J. Liu, C. W. Kung, H. Noh, M. R. D.
Stefano, N. M. Schweitzer, K. W. Chapman, J. T. Hupp, O. K. Farha, J.
Am. Chem. Soc. 2017,139, 15251−15258.
[11] G. Huang, Q. Yang, Q. Xu, S. Yu and H. Jiang, Angew. Chem. Int. Ed.
2016, 5, 7379–7383.
[12]
(a) Q. Yang, H.-Yu. Zhang, L. Wang, Y. Zhang, Jiquan Zhao, ACS
Omega. 2018, 3, 4199−4212; (b) Y. Zhu, Y.-M. Wang, P. Liu, Y.-L. Wu,
W. Wei, C.-K. Xia, J.-M. Xie, New J. Chem. 2015, 39, 2669-2674.
[4]
A. Chakraborty, P. Sutar, P. Yadav, M. Eswaramoorthy, T. K. Maji, Inorg.
Chem. 2018, 57, 14480- 14483.
This article is protected by copyright. All rights reserved.