Organic Letters
MeOH at 0 °C, similar to Yang’s observation, (+)-fusarisetin A
Letter
8
Science (BNLMS). We also thank Ms. Fuling Liu of Xiamen
University for solving the X-ray structure.
(
1) and (+)-C3-epi-fusarisetin A were obtained in a 1.25/1.0
25
ratio in a combined yield of 50% in two steps. The
spectroscopic data ( H and C NMR, HRMS, and optical
rotation) for the synthetic sample (1) and its C3-epimer
1
13
REFERENCES
■
4
8,26
(1) (a) Suzuki, K.; Yasui, Y. Hybrid Natural Products. In Natural
Products in Medicinal Chemistry; Hanessian, S., Ed.; Wiley-VCH: 2014;
pp 441−472. (b) Suzuki, K. Chem. Rec. 2010, 10, 291.
fully coincided with those reported.
After the successful synthesis of fusarisetin A, we examined
the feasibility of our modular synthetic strategy in the diverted
total synthesis of the analogues guided by a “hybridization”
concept. Through the late-stage incorporation of amino acid
units, as examples, two pentacyclic compounds 16 and 18 were
synthesized respectively in 60% and 55% yield (1:2 dr at C3′)
from the advanced intermediate 13 (Scheme 5). It is
noteworthy to mention that the epimerization at C3′ seems
(
4
2) (a) Dasari, B.; Jimmidi, R.; Arya, P. Eur. J. Med. Chem. 2015, 94,
97. (b) Meunier, B. Acc. Chem. Res. 2008, 41, 69. (c) Gademann, K.
Chimia 2006, 60, 841. (d) Tietze, L. F.; Bell, H. P.; Chandrasekhar, S.
Angew. Chem., Int. Ed. 2003, 42, 3996. (e) Mehta, G.; Singh, V. Chem.
Soc. Rev. 2002, 31, 324.
(
3) Dewick, P. M. Medicinal Natural Products; Wiley: Hoboken, NJ,
2009; pp 7 − 38.
(4) Jang, J.-H.; Asami, Y.; Jang, J.-P.; Kim, S.-O.; Moon, D. O.; Shin,
K.-S.; Hashizume, D.; Muroi, M.; Saito, T.; Oh, H.; Kim, B. Y.; Osada,
H.; Ahn, J. S. J. Am. Chem. Soc. 2011, 133, 6865.
18
inevitable under the current condensation conditions.
(
1
5) Deng, J.; Zhu, B.; Lu, Z.; Yu, H.; Li, A. J. Am. Chem. Soc. 2012,
34, 920.
6) Xu, J.; Caro-Diaz, E. J. E.; Trzoss, L.; Theodorakis, E. A. J. Am.
Chem. Soc. 2012, 134, 5072.
7) Yin, J.; Wang, C.; Kong, L.; Cai, S.; Gao, S. Angew. Chem., Int. Ed.
012, 51, 7786.
8) Huang, J.; Fang, L.; Long, R.; Shi, L.-L.; Shen, H.-J.; Li, C.-c.;
Yang, Z. Org. Lett. 2013, 15, 4018.
9) (a) Kohyama, A.; Kanoh, N.; Kwon, E.; Iwabuchi, Y. Tetrahedron
Scheme 5. Diverted Total Synthesis of the Analogues
(
(
2
(
(
Lett. 2016, 57, 517. (b) Nagaraju, K.; Mainkar, P. S.; Chandrasekhar, S.
Tetrahedron Lett. 2015, 56, 404. (c) Huang, J.; Fang, L.; Gong, J.; Li,
C.; Yang, Z. Tetrahedron 2015, 71, 3720. (d) Kong, L.; Rao, M.; Ou, J.;
Yin, J.; Lu, W.; Liu, M.; Pang, X.; Gao, S. Org. Biomol. Chem. 2014, 12,
7
591. (e) Yin, J.; Gao, S. Synlett 2014, 25, 1. (f) Caro-Diaz, E. J. E.;
Aung, A.; Xu, J.; Varghese, S.; Theodorakis, E. A. Org. Chem. Front.
2014, 1, 135. (g) Yin, J.; Kong, L.; Wang, C.; Shi, Y.; Cai, S.; Gao, S.
Chem. - Eur. J. 2013, 19, 13040. (h) Xu, J.; Caro-Diaz, E. J. E.; Lacoske,
M. H.; Hung, C.-I.; Jamora, C.; Theodorakis, E. A. Chem. Sci. 2012, 3,
In summary, we have developed an efficient, modular
synthetic strategy for the asymmetric total synthesis of
+)-fusarisetin A, featuring a Suzuki coupling and a novel
one-pot four-reaction sequence (IMDA/Mukaiyama aldol/
desilylation/oxidation). Our method is also viable for the
diverted total synthesis of the analogues. We anticipated that
this approach would provide a diverse array of analogues for
further biological studies of tumor metastasis.
(
3
(
378.
10) For reviews, see: (a) Hong, B.-C.; Raja, A.; Sheth, V. M.
Synthesis 2015, 47, 3257. (b) Calder, E. D. D.; Grafton, M. W.;
Sutherland, A. Synlett 2014, 25, 1068. (c) Albrecht, L.; Jiang, H.;
Jorgensen, K. A. Angew. Chem., Int. Ed. 2011, 50, 8492. (d) Broadwater,
S. J.; Roth, S. L.; Price, K. E.; Kobaslija, M.; McQuade, D. T. Org.
Biomol. Chem. 2005, 3, 2899. For selected examples, see: (e) Zhao, S.;
Andrade, R. B. J. Am. Chem. Soc. 2013, 135, 13334. (f) Ishikawa, H.;
Honma, M.; Hayashi, Y. Angew. Chem., Int. Ed. 2011, 50, 2824.
ASSOCIATED CONTENT
Supporting Information
■
*
S
(g) Zhu, S.; Yu, S.; Wang, Y.; Ma, D. Angew. Chem., Int. Ed. 2010, 49,
4
2
656. (h) Ishikawa, H.; Suzuki, T.; Hayashi, Y. Angew. Chem., Int. Ed.
009, 48, 1304.
(11) (a) Wilson, R. M.; Danishefsky, S. J. J. Org. Chem. 2006, 71,
Experiment details and spectral data for all new
8329. (b) Ding, F.; William, R.; Leow, M. L.; Chai, H.; Fong, J. Z. M.;
Liu, X.-W. Org. Lett. 2014, 16, 26. (c) Handore, K. L.; Reddy, D. S.
Org. Lett. 2013, 15, 1894.
1
13
(
(
(
12) White, K. N.; Konopelski, J. P. Org. Lett. 2005, 7, 4111.
13) Hatakeyama, S.; Saijo, K.; Takano, S. Tetrahedron Lett. 1985, 26,
X-ray data for compound 2 (CIF)
8
65.
AUTHOR INFORMATION
■
(14) (a) Longbottom, D. A.; Morrison, A. J.; Dixon, D. J.; Ley, S. V.
Angew. Chem., Int. Ed. 2002, 41, 2786. (b) Takai, K.; Nitta, K.;
Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408.
(15) A two-step synthesis of pure E-vinyl iodide 6 was also reported
Notes
in the Supporting Information.
The authors declare no competing financial interest.
(16) Njardarson, J. T.; Biswas, K.; Danishefsky, S. J. Chem. Commun.
2
002, 2759.
ACKNOWLEDGMENTS
We gratefully acknowledge the Natural Science Foundation of
China for financial support of this work by grants (Nos.
1142007, 21272194, 21572187, and U1405228). We thank
the support from SRF for ROCS of SEM, FRFCU (Nos.
0720150145 and 20720160025), PCSIRT, and the opening
foundation from Beijing National Laboratory for Molecular
(17) (a) Song, L.; Liu, J.; Gui, H.; Hui, C.; Zhou, J.; Guo, Y.; Zhang,
P.; Xu, Z.; Ye, T. Chem. - Asian J. 2013, 8, 2955. (b) Fuwa, H.; Suzuki,
T.; Kubo, H.; Yamori, T.; Sasaki, M. Chem. - Eur. J. 2011, 17, 2678.
■
(c) Gillmann, T.; Weeber, T. Synlett 1994, 1994, 649.
2
(
(
18) See Supporting Information for more details.
19) For reviews, see: (a) Matsuo, J.-i.; Murakami, M. Angew. Chem.,
2
Int. Ed. 2013, 52, 9109. (b) Kan, S. B. J.; Ng, K. K. H.; Paterson, I.
Angew. Chem., Int. Ed. 2013, 52, 9097. For intramolecular cases, see:
C
Org. Lett. XXXX, XXX, XXX−XXX