Page 5 of 11
Journal of the American Chemical Society
2
014, 53, 1968-1972. (f) Endo, K.; Grubbs, R. H. Chelated Ruthenium
Qiu, S.; Yan, Y. 3D Microporous Base‐Functionalized Covalent Organic
Frameworks for Size‐Selective Catalysis. Angew. Chem. Int. Ed. 2014, 53,
2878-2882. (l) Wang, X.; Han, X.; Zhang, J.; Wu, X.; Liu, Y.; Cui, Y.
Homochiral 2D Porous Covalent Organic Frameworks for Heterogeneous
Asymmetric Catalysis. J. Am. Chem. Soc. 2016, 138, 12332-12335. (m)
Han, X.; Huang, J.; Yuan, C.; Liu, Y.; Cui, Y. Chiral 3D Covalent Organic
Frameworks for High Performance Liquid Chromatographic Enantiosepa-
ration. J. Am. Chem. Soc. 2018, 140, 892-895. (n) Sun, Q.; Aguila, B.;
Perman, J.; Nguyen, N.; Ma, S. Flexibility Matters: Cooperative Active
Sites in Covalent Organic Framework and Threaded Ionic Polymer. J. Am.
Chem. Soc. 2016, 138, 15790-15796. (o) Xu, H.; Gao, J.; Jiang, D. Stable,
crystalline, porous, covalent organic frameworks as a platform for chiral
organocatalysts. Nat. Chem. 2015, 7, 905-912. (p) Liu, W.; Cao, Y.;
Wang, W.; Gong, D.; Cao, T.; Qian, J.; Iqbal, K.; Qin, W.; Guo, H. Me-
chanochromic luminescent covalent organic frameworks for highly selec-
tive hydroxyl radical detection. Chem. Commun. 2019, 55, 167-170. **
Catalysts for Z-Selective Olefin Metathesis. J. Am. Chem. Soc. 2011, 133,
525-8527.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
8
(8) (a) Hoffmann, N. Photochemical Reactions as Key Steps in Organic
Synthesis. Chem. Rev. 2008, 108, 1052-1103. (b) Waldeck, D. H. Photoi-
somerization dynamics of stilbenes. Chem. Rev. 1991, 91, 415-436. (c)
Arai, T.; Tokumaru, K. Photochemical one-way adiabatic isomerization of
aromatic olefins. Chem. Rev. 1993, 93, 23-39. (d) Prier, C. K.; Rankic, D.
A.; MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transi-
tion Metal Complexes: Applications in Organic Synthesis. Chem. Rev.
2013, 113, 5322-5363.
(9) (a) Happ, B.; Winter, A.; Hager, M. D.; Schubert, U. S. Photogener-
ated avenues in macromolecules containing Re(I), Ru(II), Os(II), and
Ir(III) metal complexes of pyridine-based ligands. Chem. Soc. Rev. 2012,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
4
1, 2222-2255. (b) Meyer, T. J. Chemical approaches to artificial photo-
synthesis. Acc. Chem. Res. 1989, 22, 163-170.
(14) Ohara, K.; Inokuma, Y.; Fujita, M. The Catalytic Z to E Isomeriza-
(10) (a) Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers: from
molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323-5351.
tion of Stilbenes in a Photosensitizing Porous Coordination Network.
Angew. Chem. Int. Ed. 2010, 49, 5507-5509.
(b) Fabry, D. C.; Ronge, M. A.; Rueping, M. Immobilization and Con-
(15) Hammond, G. S.; Saltiel, J.; Lamola, A. A.; Turro, N. J.; Bradshaw,
tinuous Recycling of Photoredox Catalysts in Ionic Liquids for Applica-
tions in Batch Reactions and Flow Systems: Catalytic Alkene Isomeriza-
tion by Using Visible Light. Chem. – Eur. J. 2015, 21, 5350-5354. (c)
Singh, K.; Staig, S. J.; Weaver, J. D. Facile Synthesis of Z-Alkenes via
Uphill Catalysis. J. Am. Chem. Soc. 2014, 136, 5275-5278.
J. S.; Cowan, D. O.; Counsell, R. C.; Vogt, V.; Dalton, C. Mechanisms of
1
Photochemical Reactions in Solution. XXII. Photochemical cis-trans
Isomerization. J. Am. Chem. Soc. 1964, 86, 3197-3217.
(16) (a) Schwab, M. G.; Fassbender, B.; Spiess, H. W.; Thomas, A.; Feng,
X.; Müllen, K. Catalyst-free Preparation of Melamine-Based Microporous
Polymer Networks through Schiff Base Chemistry. J. Am. Chem. Soc.
(11) (a) Ravelli, D.; Fagnoni, M.; Albini, A. Photoorganocatalysis. What
for? Chem. Soc. Rev. 2013, 42, 97-113. (b) Metternich, J. B.; Gilmour, R.
A Bio-Inspired, Catalytic E → Z Isomerization of Activated Olefins. J.
Am. Chem. Soc. 2015, 137, 11254-11257. (c) Cai, W.; Fan, H.; Ding, D.;
Zhang, Y.; Wang, W. Synthesis of Z-alkenes via visible light promoted
photocatalytic E → Z isomerization under metal-free conditions. Chem.
Commun. 2017, 53, 12918-12921.
2
009, 131, 7216-7217. (b) Holst, J. R.; Gillan, E. G. From Triazines to
Heptazines: Deciphering the Local Structure of Amorphous Nitrogen-Rich
Carbon Nitride Materials. J. Am. Chem. Soc. 2008, 130, 7373-7379. (c)
Lau, V. W.-h.; Mesch, M. B.; Duppel, V.; Blum, V.; Senker, J.; Lotsch, B.
V. Low-Molecular-Weight Carbon Nitrides for Solar Hydrogen Evolution.
J. Am. Chem. Soc. 2015, 137, 1064-1072. (d) Kuecken, S.; Acharjya, A.;
Zhi, L.; Schwarze, M.; Schomäcker, R.; Thomas, A. Fast tuning of cova-
lent triazine frameworks for photocatalytic hydrogen evolution. Chem.
Commun. 2017, 53, 5854-5857.
(12) (a) Zhao, Y. -P.; Yang, L. -Y.; Liu, R. S. H. Designing systems for
one-way trans to cis photoisomerization for solar reactions. Green Chem.
2
of Photochemical Reactions in Solution. XXXIX. Study of Energy Trans-
fer by Kinetic Spectrophotometry. J. Am. Chem. Soc. 1966, 88, 4769-
4777. (c) Liu, R. S. H.; Turro, N. J.; Hammond, G. S. Mechanisms of
Photochemical Reactions in Solution. XXXI. Activation and Deactivation
of Conjugated Dienes by Energy Transfer. J. Am. Chem. Soc. 1965, 87,
009, 11, 837-842. (b) Herkstroeter, W. G.; Hammond, G. S. Mechanisms
1
(17) Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W.
Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during
Condensation of Melamine Rings to Graphitic Carbon Nitride:ꢀ Synthesis,
Structure Determination by X-ray Powder Diffractometry, Solid-State
NMR, and Theoretical Studies. J. Am. Chem. Soc. 2003, 125, 10288-
3
406-3412.
1
0300.
(13) (a) Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger,
(18) Caldwell, R. A.; Zhou, L. Are Perpendicular Alkene Triplets Just 1,2-
A. J.; Yaghi, O. M. Porous, Crystalline, Covalent Organic Frameworks.
Science 2005, 310, 1166-1170. (b) Colson, J. W.; Dichtel, W. R. Rational-
ly synthesized two-dimensional polymers. Nat. Chem. 2013, 5, 453-465.
Biradicals? Studies with the Cyclopropylcarbinyl Clock. J. Am. Chem.
Soc. 1994, 116, 2271-2275.
(
c) Dinga, S.-Y.; Wang, W. Covalent organic frameworks (COFs): from
(19) Klosterman, J. K.; Iwamura, M.; Tahara, T.; Fujita, M. Energy Trans-
fer in a Mechanically Trapped Exciplex. J. Am. Chem. Soc. 2009, 131,
9478-9479.
design to applications. Chem. Soc. Rev. 2013, 42, 548-568. (d) Calik, M.;
Sick, T.; Dogru, M.; Döblinger, M.; Datz, S.; Budde, H.; Hartschuh, A.;
Auras, F.; Bein, T. From Highly Crystalline to Outer Surface-
Functionalized Covalent Organic Frameworks—A Modulation Approach.
J. Am. Chem. Soc. 2016, 138, 1234-1239. (e) Pachfule, P.; Acharjya, A.;
Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomäcker, R.; Thomas, A.;
Schmidt, J. Diacetylene Functionalized Covalent Organic Framework
[
(
**]Although the pictorial representation of both the COFs (COF-TpMA
MC) and TpTt COF) is similar but we believe that our synthesized mate-
rial has higher crystallinity, porosity, purity and accuracy of the structure
prediction from the experimentally observed data compared to the previ-
ous report.
(COF) for Photocatalytic Hydrogen Generation. J. Am. Chem. Soc. 2018,
1
40, 1423-1427. (f) Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M.
V.; Heine, T.; Banerjee, R. Construction of Crystalline 2D Covalent Or-
ganic Frameworks with Remarkable Chemical (Acid/Base) Stability via a
Combined Reversible and Irreversible Route. J. Am. Chem. Soc. 2012,
1
34, 19524-19527. (g) Shinde, D. B.; Aiyappa, H. B.; Bhadra, M.; Biswal,
B. P.; Wadge, P.; Kandambeth, S.; Garai, B.; Kundu, T.; Kurungot, S.;
Banerjee, R. A mechanochemically synthesized covalent organic frame-
work as a proton-conducting solid electrolyte. J. Mater. Chem. A 2016, 4,
2
682-2690. (h) Ding, S.-Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.-G.;
Su, C.-Y.; Wang, W. Construction of Covalent Organic Framework for
Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. J. Am.
Chem. Soc. 2011, 133, 19816-19822. (i) Bhadra, M.; Sasmal, H. S.; Basu,
A.; Midya, S. P.; Kandambeth, S.; Pachfule, P.; Balaraman, E.; Banerjee,
R. Predesigned Metal-Anchored Building Block for In Situ Generation of
Pd Nanoparticles in Porous Covalent Organic Framework: Application in
Heterogeneous Tandem Catalysis. ACS Appl. Mater. Interfaces 2017, 9,
1
3785-13792. (j) Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Pod-
jaski, F.; Ochsenfeld, C.; Lotsch, B. V. A tunable azine covalent organic
framework platform for visible light-induced hydrogen generation. Nat.
Commun. 2015, 6, 8508-8516. (k) Fang, Q.; Gu, S.; Zheng, J.; Zhuang, Z.;
ACS Paragon Plus Environment