Pd NPs as Efficient Catalysts for Coupling Reactions
but tetraalkylammonium salts were generally added as
phase transfer agents.15
Pd nanoparticles were also used as a catalyst for the
Suzuki reaction, but they were generally stabilized by
incorporation into polymers, dendrimers, or inorganic
supports.16 In most of these applications, iodo- and
bromoarenes reacted, but only at elevated temperature,
while aryl chlorides were almost unreactive. On the
contrary, only a few articles reported the activation of
bromides and chlorides by Pd NPs under mild condi-
tions.17
With this aim, we tested the activity of the free
monodisperse Pd nanoparticles in a biphasic medium
consisting of an ionic liquid, generally a melt tetraalkyl-
ammonium bromide containing both reagents and cata-
lyst, and an aqueous solution of a source of hydroxide
anions (OH-), which are necessary to activate the boronic
acid. Under these conditions, although the IL is water-
soluble, it forms a biphasic system as already found by
other groups.18
FIGURE 1. (a) TEM characterization of a palladium colloidal
dispersion synthesized as described in the text. (b) Histogram
representing size distribution of the palladium nanoparticle
core. (c) Core-shell structure representation of a nanoparticle.
regio- and stereoselective Heck arylation of cinnamates7
and methacrylates8 in ILs, we found that by dissolving
palladium acetate in melt tetrabutylammonium bromide
(TBAB) and using tetrabutylammonium acetate (TBAA)
as base, the rapidly formed dark suspension of Pd
nanoparticles (Pd NPs) efficiently catalyzed the reaction
of aryl bromides and chlorides.
Of particular importance was the modality of prepara-
tion of Pd nanocolloids, carried out by adding to Pd(OAc)2,
dissolved in the IL, an excess of tetrabutylammonium
acetate and heating the reaction mixture at 90 °C until
a homogeneous dark red mixture was obtained (see
Supporting Information).
The first experiments were devoted to investigating the
efficiency of the catalytic system composed by Pd NPs,
TBAB, and aqueous Na2CO3 on halobenzenes. At high
temperatures, bromobenzene was rapidly converted into
diphenyl (Table 1, entry 1), but the catalyst activity
dropped fast when either the reaction temperature was
lowered or the less reactive chlorobenzene was used as
the substrate (entries 2 and 3). Ascribing this scarce
Reactions occurred at the surface of the monodisperse
nanoparticles, formed by chemical reduction of Pd(OAc)2
by TBAA,9 whose structure, defined “core-shell”, is
composed of a metallic core (∼3.3 nm in size) surrounded
by a stabilizing shell containing tetrabutylammonium
cations and Br- and [PdBr4]2- species (Figure 1).
Although the effectiveness of these nanosized catalysts
has been widely demonstrated in the Heck couplings, the
use of ILs as reaction media for other Pd NP-catalyzed
coupling reactions is a relatively unexplored area.
We report here the applications of free Pd nanopar-
ticles as catalyst for the Suzuki and Stille cross-coupling
reactions of aryl bromides and chlorides carried out in
ILs under mild conditions, with the recycling of the
catalyst for aryl bromides.
(11) (a) McLachlan, F.; Mathews, C. J.; Smith, P. J.; Welton, T.
Organometallics 2003, 22, 5350-5357. (b) Revell, J. D.; Ganesan, A.
Org. Lett. 2002, 4, 3071-3073.
Results
(12) (a) Corma, A.; Garcia, H.; Leyva, A. Tetrahedron 2004, 60,
8553-8560. (b) Alonso, D. A.; Najera, C.; Pacheco, M. C. J. Org. Chem.
2002, 67, 5588-5594.
Our investigations started with the study of Suzuki-
Myiaura cross-coupling reaction, an extremely important
methodology for the generation of new carbon-carbon
(13) (a) Liu, S.; Fukuyama, T.; Sato, M.; Ryu, I. Synlett 2004, 10,
1814-1816. (b) Rajagopal, R.; Jarikote, D. V.; Srinivasan, K. V. Chem.
Commun. 2002, 6, 616-617.
bonds specially applied to the synthesis of biaryls.10
A
(14) Mathews, C. J.; Smith, P. J.; Welton, T. J. Mol. Catal. A: Chem.
2004, 214, 27-32.
typical procedure employs aryl halides as electrophiles
and boronic acids as nucleophilic counterpart, these latter
being widely available and air- and moisture-stable.
Concerning the Suzuki reaction carried out in ionic
liquids, a number of articles have described the use of
Pd catalysts based on phosphanes,11 palladacycles,12
carbenes,13 and N-donor14 ligands, dissolved in ILs de-
rived from imidazolium cation. In some other cases, both
ligand-free Pd catalysts and water solvents were used,
(15) (a) Arvela, R. K.; Leadbeater, N. E.; Sangri, M. S.; Williams,
V. A.; Granados, P.; Singer, R. D. J. Org. Chem. 2005, 70, 161-168.
(b) Arcadi, A.; Cerichelli, G.; Chiarini, M.; Correa, M.; Zorzan, D. Eur.
J. Org. Chem. 2003, 4080-4086. (c) Deng, Y.; Gong, L.; Mi, A.; Liu,
H.; Jiang, Y. Synthesis 2003, 337. (d) Zim, D.; Monteiro, A. L.; Dupont,
J. Tetrahedron Lett. 2000, 41, 8199-8202.
(16) (a) Corma, A.; Garcia, H.; Leyva, A. J. Mol. Catal. A: Chem.
2005, 230, 97-105. (b) Kim, N.; Kwon, M. S.; Park, C. M.; Park, J.
Tetrahedron Lett. 2004, 45, 7057-7059. (c) Narayanan, R.; El-Sayed,
M. A. J. Phys. Chem. B 2004, 108, 8572-8580. (d) Liu, Y.; Khemtong,
C.; Hu, J. Chem. Commun. 2004, 4, 398-399. (e) Gopidas, K. R.;
Whitesell, J. K.; Fox, M. A. Nano Lett. 2003, 3, 1757-1760. (f)
Pittelkow, M.; Moth-Poulsen, K.; Boas, U.; Christensen, J. B. Langmuir
2003, 19, 7682-7684. (g) Narayanan, R.; El-Sayed, M. A. J. Am. Chem.
Soc. 2003, 125, 8340-8347. (h) Strimbu, L.; Liu, J.; Kaifer, A. E.
Langmuir 2003, 19, 483-485. (i) Ramarao, C.; Ley, S. V.; Smith, S.
C.; Shirley, I. M.; DeAlmeida, N. Chem. Commun. 2002, 10, 1132-
1133. (j) Pathak, S.; Greci, M. T.; Kwong, R. C.; Mercado, K.; Prakash,
G. K. S.; Olah, G. A.; Thompson, M. E. Chem. Mater. 2000, 12, 1985-
1989.
(17) (a) Lu, F.; Ruiz, J.; Astruc, D. Tetrahedron Lett. 2004, 45, 9443-
9445. (b) Choudary, M. B.; Madhi, S.; Chowdari, N. S.; Kantam, M.
L.; Sreedhar, B. J. Am. Chem. Soc. 2002, 124, 14127-14136. (c)
McNulty, J.; Capretta, A.; Wilson, J.; Dyck, J.; Adjabeng, G.; Robertson,
A. Chem. Commun. 2002, 17, 1986-1987.
(18) (a) Zou, Y.; Wang, Q. R.; Tao, F. G.; Ding, Z. B. Chin. J. Chem.
2004, 22, 215. (b) Zou, G.; Wang, Z.; Zhu, J.; Tang, J.; He, M. Y. J.
Mol. Catal. A: Chem. 2003, 206, 193-198.
(5) Calo`, V.; Nacci, A.; Monopoli, J. Mol. Catal. A: Chem. 2004, 214,
45-56 and references therein.
(6) Calo`, V.; Nacci, A.; Monopoli, A.; Fornaro, A.; Sabbatini, L.; Cioffi,
N.; Ditaranto, N. Organometallics 2004, 23, 5154-5158.
(7) Calo`, V.; Nacci, A.; Monopoli, A.; Laera, S.; Cioffi, N. J. Org.
Chem. 2003, 68, 2929-2933.
(8) Calo`, V.; Nacci, A.; Monopoli, A.; Detomaso, A.; Iliade, P.
Organometallics 2003, 22, 4193-4197.
(9) (a) Reetz, M. T.; Maase, M. Adv. Mater. 1999, 11, 773-777. (b)
Moreno-Mao`as, M.; Pleixats, R. Acc. Chem. Res. 2003, 36, 638-643.
(10) For reviews, see: (a) Hassan, J.; Se´vignon, M.; Gozzi, C.; Schulz,
E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. (b) Khota, S.; Lahiri, K.;
Kashinath, D. Tetrahedron 2002, 58, 9633. (c) Suzuki, A. J. Organomet.
Chem. 1999, 576, 147. (d) Stanforth, S. P. Tetrahedron 1998, 54, 263.
(e) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
J. Org. Chem, Vol. 70, No. 15, 2005 6041