Notes and references
1
(a) M. Winter and R. J. Brodd, Chem. Rev., 2004, 104, 4245–4269;
b) C.-M. Yang, Y.-J. Kim, M. Endo, H. Kanoh, M. Yudasaka,
S. Iijima and K. Kaneko, J. Am. Chem. Soc., 2007, 129, 20–21;
c) D. Hulicova-Jurcakova, A. M. Puziy, O. I. Poddubnaya,
F. Suarez-Garcıa, J. M. D. Tascn and G. Q. Lu, J. Am. Chem.
(
(
´
´
Soc., 2009, 131, 5026–5027; (d) C. Largeot, C. Portet, J. Chmiola,
P. Taberna, Y. Gogotsi and P. Simon, J. Am. Chem. Soc., 2008, 130,
2730–2731; (e) M. M. Shaijumon, F. S. Ou, L. Ci and P. M. Ajayan,
Chem. Commun., 2008, 2373–2375; (f) C. Xu, Y. Zhao, G. Yang,
F. Li and H.-L. Li, Chem. Commun., 2009, 7575–7577; (g) L. Cao,
F. Xu, Y. Liang and H.-L. Li, Adv. Mater., 2004, 16, 1853–1857;
2 3
Fig. 5 (a) Cyclic voltammograms of Bi O (1) hierarchical rippled
nanobelts and (2) nanobelts with smooth surfaces in 1.0 M Na
À1
2
SO
(1)
4
electrolyte at scan rate of 100 mV s . (b) Cycle-life data of Bi
2
O
3
(h) L. Cao, L.-B. Kong, Y.-Y. Liang and H.-L. Li, Chem. Commun.,
hierarchical rippled nanobelts and (2) nanobelts with smooth surfaces.
2004, 1646–1647; (i) J. Lee, S. Yoon, T. Hyeon, S. M. Oh and
K. B. Kim, Chem. Commun., 1999, 2177–2178; (j) H. Liu, L.-H. Jin,
P. He, C. Wang and Y.-Y. Xia, Chem. Commun., 2009, 6813–6815;
The effects of the surface morphology on the Csp of Bi O
2
3
(k) Y. Wang, H. Li and Y.-Y. Xia, Adv. Mater., 2006, 18,
electrode were investigated. The cyclic voltamogramm of Bi O
2
2619–2623; (l) H.-J. Liu, W.-J. Cui, L.-H. Jin, C.-X. Wang and
Y.-Y. Xia, J. Mater. Chem., 2009, 19, 3661–3667.
3
nanobelts with smooth surfaces in 1.0 M Na SO
2
4
solution at a
À1
2 (a) C.-C. Hu, K.-H. Chang, M.-C. Lin and Y.-T. Wu, Nano Lett.,
006, 6, 2690; (b) H. Yu, X. Fu, C. Zhou, F. Peng, H. Wang and
J. Yang, Chem. Commun., 2009, 2408–2410.
scan rate of 100 mV s is shown in Fig. 5(a)(2), which also
2
shows one pair of redox peaks. The average value of Csp of
À1
Bi
2
O
3
nanobelts with smooth surfaces is 61 F g , which is
À1
3 (a) Y.-S. Hu, Y.-G. Guo, W. Sigle, S. Hore, P. Balaya and
J. Maier, Nat. Mater., 2006, 5, 713–717; (b) H. Tan, E. Ye and
W. Y. Fan, Adv. Mater., 2006, 18, 619–623.
K. Chang, C. Hu and C. Chou, Chem. Mater., 2007, 19, 2112–2119.
S. Xiong, C. Yuan, X. Zhang, B. Xi and Y. Qian, Chem.–Eur. J.,
2009, 15, 5320–5326.
much lower than 250 F g obtained from the hierarchical
rippled Bi nanobelts. This clearly demonstrates the value of
O
2 3
4
5
Csp of Bi O depends strongly on the surface morphology. In
2 3
the case of hierarchical rippled Bi O nanobelts, their surface
2
3
6
7
T. Brezesinski, J. Wang, J. Polleux, B. Dunn and S. H. Tolbert,
J. Am. Chem. Soc., 2009, 131, 1802–1809.
areas are much larger than those of Bi O nanobelts with
2
3
smooth surfaces, leading to the higher efficiency for Bi O
2
3
(a) R. Liu and S. B. Lee, J. Am. Chem. Soc., 2008, 130, 2942–2943;
(b) G. R. Li, Z. P. Feng, Y. N. Ou, D. Wu, R. Fu and Y. X. Tong,
Langmuir, 2010, 26, 2209–2213; (c) Z. P. Feng, G. R. Li,
J. H. Zhong, Z. L. Wang, Y. N. Ou and Y. X. Tong, Electrochem.
Commun., 2009, 11, 706–710.
utilization. This may be the primary reason for the significantly
increased value of Csp of Bi electrode.
The electrochemical stability of hierarchical rippled Bi
nanobelts was examined by subjecting a Bi electrode to CV
2 3
O
2 3
O
2 3
O
8
R. K. Selvan, I. Perelshtein, N. Perkas and A. Gedanken, J. Phys.
Chem. C, 2008, 112, 1825–1830.
for a large number of cycles. The cycling process was performed
À1
9 T. P. Gujar, V. R. Shinde, C. D. Lokhande and S.-H. Han,
J. Power Sources, 2006, 161, 1479–1485.
at a scan rate of 100 mV s for 1000 cycles. Fig. 5(b)(1) shows the
variation of specific capacitance as a function of cycle number. As
revealed from this data, there is a little decrease in the value of
specific capacitance in the first 33 cycles, and then there is very
minimal increasing up to 1000 cycles. The system can withstand
over 1000 cycles without any significant decrease in the specific
capacitance. Therefore, the hierarchical rippled Bi O nanobelts
1
0 D. Yuan, J. Zeng, N. Kristian, Y. Wang and X. Wang,
Electrochem. Commun., 2009, 11, 313–317.
11 (a) K. Takahashi, S. J. Limmer, Y. Wang and G. Cao, J. Phys.
Chem. B, 2004, 108, 9795–9800; (b) J. Rajeswari, P. S. Kishore,
B. Viswanathan and T. K. Varadarajan, Electrochem. Commun.,
2
12 Y. Cao and T. E. Mallouk, Chem. Mater., 2008, 20, 5260–5265.
009, 11, 572–575.
2
3
1
3 (a) S. W. Lee, B.-S. Kim, S. Chen, Y. Shao-Horn and
P. T. Hammond, J. Am. Chem. Soc., 2009, 131, 671–679;
(
as electrodes show very high electrochemical stability for
long-term capacitor applications. Although Bi nanobelts with
2 3
O
b) M. Kaempgen, C. K. Chan, J. Ma, Y. Cui and G. Gruner,
Nano Lett., 2009, 9, 1872–1876.
14 (a) R. Ma, Y. Bando, L. Zhang and T. Sasaki, Adv. Mater., 2004,
6, 918–922; (b) J. Liu, Q. Li, T. Wang, D. Yu and Y. Li,
smooth surfaces also showed good electrochemical stability, as
shown in Fig. 5(b)(2), their Csp values are much smaller than
1
2 3
those of hierarchical rippled Bi O nanobelts. Therefore, the
Angew. Chem., Int. Ed., 2004, 43, 5048–5052; (c) L. Zhang,
J. C. Yu, A.-W. Xu, Q. Li, K. W. Kwong and L. Wu, Chem.
Commun., 2003, 2910–2911; (d) J. Wang and Y. Li, Chem. Commun.,
2003, 2320–2321; (e) J. Gong, S. Yang, J. Duan, R. Zhang and
Y. Du, Chem. Commun., 2005, 351–353; (f) C. Lu, L. Qi, J. Yang,
L. Tang, D. Zhang and J. Ma, Chem. Commun., 2006, 3551–3553.
15 Y. Qiu, D. Liu, J. Yang and S. Yang, Adv. Mater., 2006, 18,
2604–2608.
2 3
hierarchical rippled Bi O nanobelts show a potential application
for electrochemical supercapacitors.
In summary, electrode potential oscillations have been used
for the synthesis of hierarchical rippled nanobelts. The
hierarchical rippled Bi O nanobelts showed a much bigger
2
3
specific surface area than that of nanobelts with smooth
surfaces. These deposited hierarchical rippled Bi nanobelts
1
6 (a) Y. Oaki and H. Imai, Cryst. Growth Des., 2003, 3, 711–716;
b) T. Kuroda, T. Irisawa and A. Ookawa, J. Cryst. Growth, 1977,
2, 41–46; (c) G. R. Li, D. L. Qu and Y. X. Tong, Electrochem.
Commun., 2008, 10, 80–84.
17 L. Xu, Q. Chen and D. Xu, J. Phys. Chem. C, 2007, 111, 11560–11565.
2
O
3
(
4
have been successfully employed as supercapacitor electrodes,
and high specific capacitance and high electrochemcial
stability were obtained. It is believed that this study will open
a new route in the search of new metal oxide nanomaterials for
supercapacitor applications because of the low cost associated
with the precursor and the simplicity in the preparation of this
novel nanobelt structure.
1
1
2
8 T. C. Liu, W. G. Pell and B. E. Conway, Electrochim. Acta, 1999,
4
9 H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, G. H. Li and
L. D. Zhang, Thin Solid Films, 2006, 513, 142–147.
0 (a) V. S. Dharmadhikari and A. Goswami, J. Vac. Sci. Technol.,
4, 2829.
1
983, A1, 383; (b) W. E. Morgan, W. J. Stec and J. R. Van Wazer,
This work was supported by NSFC (20603048, 20873184,
and 90923008), Guangdong Province (2008B010600040 and
Inorg. Chem., 1973, 12, 953; (c) D. Barreca, F. Morazzoni,
G. A. Rizzi, R. Scotti and E. Tondello, Phys. Chem. Chem. Phys.,
2001, 3, 1743.
9
251027501000002), and Sun Yat-sen University (09lgpy17).
This journal is ꢀc The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 5021–5023 | 5023