Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
ChemComm
17 S.-W. Hu, S. Qiao, B.-Y. Xu, X. Peng, J.-J. Xu and H.-Y. Chen, Anal.
In summary, we report in this work the first case of visible light
generated carbon dots in the molecular self-assembly of a
terthiophene amphiphile TTC4L. The resultant CDs display narrow
size distribution which endows the CDs with excitation-independent
emission and two-photon emission. The absolute fluorescence
quantum yield of these CDs can be as high as ca. 87% which is
probably owing to the presence of alkyl chains and COOH groups on
the surface as a result of the mild photoreaction condition.
Mechanism study shows that visible light irradiation facilitates the
formation of the long-lived TTC4L triplets, which transfer its energy
to oxygen to produce O2 . The reactive O2 radical triggers the
carbonization of the terthiophene skeleton in the self-assembly of
TTC4L. Although the details for the carbonization is still not clear,
we believe that the pre self-assembly of TTC4L is very crucial in the
CD formation since it allows the terthiophene groups arrange in
sufficient vicinity and order which allows facile generation of C-C
bonds. In a word, the present visible light driven strategy provides a
new method to prepared high quality CDs, which are promising for
myriad applications, such as solar energy conversion, bioimaging,
etc.
Chem., 2017, 89, 2131-2137.
DOI: 10.1039/C7CC08876K
18 X. Gao, C. Du, Z. Zhuang and W. Chen, J. Mater. Chem. C, 2016,
4, 6927-6945.
19 X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker and W. A.
Scrivens, J. Am. Chem. Soc., 2004, 126, 12736-12737.
20 Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak,
M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H.
Yang, M. E. Kose, B. Chen, L. M. Veca and S.-Y. Xie, J. Am. Chem.
Soc., 2006, 128, 7756-7757.
21 J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun and Z. Ding,
J. Am. Chem. Soc., 2007, 129, 744-745.
22 Z. Liang, M. Kang, G. F. Payne, X. Wang and R. Sun, ACS Appl.
Mater. Interfaces, 2016, 8, 17478-17488.
23 M. Zheng, Y. Li, S. Liu, W. Wang, Z. Xie and X. Jing, ACS Appl.
Mater. Interfaces, 2016, 8, 23533-23541.
24 H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang and X. Yang, Chem.
Commun., 2009, DOI: 10.1039/b907612c, 5118-5120.
25 L. Zhao, X. Cheng, Y. Ding, Y. Yan and J. Huang, Soft Matter,
2012, 8, 10472-10478.
·-
·-
26 X. Wu, J. Zhao, S. Guo, L. Wang, W. Shi, H. Huang, Y. Liu and Z.
Kang, Nanoscale, 2016, 8, 17314-17321.
27 L. Bai, S. Qiao, Y. Fang, J. Tian, J. McLeod, Y. Song, H. Huang, Y.
Liu and Z. Kang, J. Mater. Chem. C, 2016, 4, 8490-8495.
28 M. Zheng, Z. G. Xie, D. Qu, D. Li, P. Du, X. B. Jing and Z. C. Sun,
ACS Appl. Mater. Interfaces, 2013, 5, 13242-13247.
29 P. Anilkumar, X. Wang, L. Cao, S. Sahu, J. H. Liu, P. Wang, K.
Korch, K. N. Tackett, A. Parenzan and Y. P. Sun, Nanoscale, 2011,
3, 2023-2027.
Acknowledgment
This work is supported by the National Natural Science
Foundation of China (Grant No. 21573011), and National Basic
Research Program of China (2013CB933800).
30 M. R. Ammar, N. Galy, J. N. Rouzaud, N. Toulhoat, C. E. Vaudey,
P. Simon and N. Moncoffre, Carbon, 2015, 95, 364-373.
31 L. Bao, C. Liu, Z. L. Zhang and D. W. Pang, Adv. Mater., 2015, 27,
1663-1667.
32 L. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Huang, A.
Wu and H. Lin, Adv. Mater., 2015, 27, 7782-7787.
33 L. Ge, H. Yu, H. Ren, B. Shi, Q. Guo, W. Gao, Z. Li and J. Li, J.
Mater. Sci., 2017, 52, 9979-9989.
34 Y. Mu, N. Wang, Z. C. Sun, J. Wang, J. Y. Li and J. H. Yu, Chem.
Sci., 2016, 7, 3564-3568.
35 S. Lu, G. Xiao, L. Sui, T. Feng, X. Yong, S. Zhu, B. Li, Z. Liu, B. Zou,
M. Jin, J. S. Tse, H. Yan and B. Yang, Angew. Chem., Int. Ed.,
2017, 56, 6187-6191.
Notes and references
1
Y. Yan, L. Jiang and J. Huang, Phys. Chem. Chem. Phys., 2011, 13,
9074-9082.
2
3
4
Y. Yan and J. Huang, Coord. Chem. Rev., 2010, 254, 1072-1080.
Y. Liu, B. Liu and Z. Nie, Nano Today, 2015, 10, 278-300.
Q. Zhao, Y. Wang, Y. Yan and J. Huang, ACS Nano, 2014, 8,
11341-11349.
5
6
Z. Wu, Y. Yan and J. Huang, Langmuir, 2014, 30, 14375-14384.
A. Wang, W. Shi, J. Huang and Y. Yan, Soft Matter, 2016, 12,
337-357.
7
8
9
H. Yang, B. Yuan, X. Zhang and O. A. Scherman, Acc. Chem. Res.,
2014, 47, 2106-2115.
Y. Che, A. Datar, X. Yang, T. Naddo, J. Zhao and L. Zang, J. Am.
Chem. Soc., 2007, 129, 6354-6355.
Z. Shen, T. Wang and M. Liu, Angew. Chem., Int. Ed., 2014, 53,
13424-13428.
36 C. H. Evans and J. C. Scaiano, J. Am. Chem. Soc., 1990, 112,
2694-2701.
TOC
10 L. Brunsveld, B. Folmer, E. W. Meijer and R. Sijbesma, Chem. Rev,
2001, 101, 4071-4098.
11 T. Aida, E. Meijer and S. Stupp, Science, 2012, 335, 813-817.
12 J. Briscoe, A. Marinovic, M. Sevilla, S. Dunn and M. Titirici,
Angew. Chem., Int. Ed., 2015, 54, 4463-4468.
13 G. A. M. Hutton, B. Reuillard, B. C. M. Martindale, C. A. Caputo,
C. W. J. Lockwood, J. N. Butt and E. Reisner, J. Am. Chem. Soc.,
2016, 138, 16722-16730.
14 B. C. M. Martindale, E. Joliat, C. Bachmann, R. Alberto and E.
Reisner, Angew. Chem., Int. Ed., 2016, 55, 9402-9406.
15 S.-T. Yang, L. Cao, P. G. Luo, F. Lu, X. Wang, H. Wang, M. J.
Meziani, Y. Liu, G. Qi and Y.-P. Sun, J. Am. Chem. Soc., 2009, 131,
11308-11309.
Molecular self-assembly may facilitate visible light generation
of carbon dots.
16 Y. Song, C. Zhu, J. Song, H. Li, D. Du and Y. Lin, ACS Appl. Mater.
Interfaces, 2017, 9, 7399-7405.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins