204
N.M. El-Metwaly, M.S. Refat / Spectrochimica Acta Part A 78 (2011) 196–204
3.8. Biological activity
[8] S. Ozden, D. Atabey, S. Yildiz, H. Goker, Bioorg. Med. Chem. 13 (2005) 1587.
[9] G. Navarrete-Vazquez, R. Cedillo, A. Hernandez-Campos, J. Yepez, F. Hernndez-
Luis, J. Valldez, R. Morales, R. Cortes, M. Hernandez, Bioorg. Med. Chem. Lett.
11 (2001) 187.
3.8.1. Eukaryotic DNA degradation effect
The DNA degradation behavior under the effect of the ligand,
metal salts and their complexes is examined. A deliberate compar-
ison reflects the completely difference in the results obtained after
mixing the calf thymus DNA with the ligand and with each complex.
The results shown in the photos (Fig. 6) the ligand and DMSO did
not degrade the DNA and the DNA migration was close to the top of
the gel. Whereas, all the complexes degraded the DNA almost com-
pletely in comparing with their original chloride salts. This behavior
is illustrated referring to the direct contact of the complexes with
the DNA which able to degrade it.
[10] A.A. Spasov, I.N. Yozhitsa, L.I. Bugavea, V.A. Anisimova, J. Pharm. Chem. 33
(1999) 232.
[11] T.A. Kabanos, A.D. Kersmidas, D. Mentzafos, U. Russo, A. Terzis, J.M. Tsangaris,
J. Chem. Soc. Dalton Trans. (1992) 2729.
[12] R.T. Stibrany, D.N. Schulz, S. Kacker, A.O. Patil, L.S. Baugh, S.P. Rucker, S. Zushma,
E. Berluche, J.A. Sissano, Macromolecules 36 (2003) 8584.
[13] A.E.M. Boelrijk, S.V. Khangulov, G.C. Dismukes, Inorg. Chem. 39 (2000) 3009.
[14] V. Rajendiran, M. Murali, E. Suresh, S. Sinha, K. Somasundaram, M. Palanian-
davar, Dalton Trans. (2008) 148.
[15] C.M. Bitler, P.L. Wood, D.T. Anstine, A. Meyer-Franke, Q. Zhao, M.A. Khan, US
Patent 6,541,486 (2003).
[16] H.L. Sandoval, M.E.L. Lemos, R.G. Velasco, I.P. Melendez, P.G. Macias, I.G. Mora,
N.B. Behrens, J. Inorg. Biochem. 102 (2008) 1267–1276.
[17] C.N. Reilley, R.W. Schmid, F.S. Sadek, J. Chem. Edu. 36 (1959) 555.
[18] A.I. Vogel, Text Book of quantitative Inorganic Analysis, Long-man, London,
1986, p. 505.
3.8.2. Antimicrobial activity
The ligand and its complexes were tested against Gram-positive
(Bacillus thuringiensis) and Gram-negative (Pseudomonas aeurogi-
nosa) bacteria for their antibacterial activities (Table 8) using the
disc diffusion sensitivity testing method. The Ni(II), Cu(II), Co(II)
and Cr(III) complexes inhibited the growth of G +ve Bt bacterium,
whereas all the complexes were non-effective against the G −ve
bacterium. The best antibacterial complex is the Ni(II) one which
showed moderate antibacterial activity, while Cr(III), Co(II) and
Cu(II) complexes showed weak activity against Gram-positive bac-
terium. The negative results can be attributed either to the in ability
of the complexes to diffuse into the Gram-negative or the Gram-
positive bacterium and hence unable to interfere with its biological
activity or they can diffuse and inactivated by unknown cellular
mechanism by the bacterium. The positive results suggested the
diffusion of the complexes inside the Bt cells and killed bacteria as
indicated by the zones of inhibition diameter.
[19] S.D. Dhmwad, K.B. Gudasi, T.R. Goudar, Ind. J. Chem. 33 (A) (1994) 320.
[20] N.L. Allinger, J. Am. Chem. Soc. 99 (1977) 8127.
[21] Hyper chem, Version 7.51, Hyper cube, Inc.
[22] K. Nakamoto, P.J. McCarthy, Spectroscopy and Structure of Metal Chelate Com-
pounds, John Wiley, New York, 1968, p. 268.
[23] C.K. Jorgensen, Chim. Inorg, Acta Rev. 2 (1962) 65.
[24] P.K. Panda, S.B. Mishra, B.K. Mohapatka, J. Inorg. Nucl. Chem. 42 (1980) 497.
[25] L. Latheef, R. Maliyeckal, P. Kurup, Polyhedron 27 (2008) 35–43.
[26] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1986.
[27] E. franco, E. Lopez–Torres, M.A. Mendiola, M.T. Sevilla, Polyhedron 19 (2000)
441.
[28] E.S. Freeman, B. Carroll, J. Phys. Chem. 62 (1958) 394.
[29] J. Sestak, V. Satava, W.W. Wendlandt, Thermochim. Acta 7 (1973) 333.
[30] A.W. Coats, J.P. Redfern, Nature 201 (1964) 68.
[31] T. Ozawa, Bull. Chem. Soc. Jpn. 38 (1965) 1881.
[32] W.W. Wendlandt, Thermal Methods of Analysis, Wiley, New York, 1974.
[33] J.H.F. Flynn, L.A. Wall, J. Res. Natl. Bur. Stand. A 70 (1996) 487.
[34] P. Kofstad, Nature 179 (1957) 1362.
[35] H.W. Horowitz, G. MJetzger, Anal. Chem. 35 (1963) 1464.
[36] S.S. Kandil, G.B. El-Hefnawy, E.A. Baker, Thermochim. Acta 414 (2004) 105.
[37] H.I. Park, L.J. Ming, J. Inorg. Biochem. 27 (1998) 57–62.
[38] (a) B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143;
(b) B.J. Hathaway, Struct. Bond. (Berl.) 57 (1984) 55.
[39] H. Montgomery, E.C. Lingefetter, Acta Cryst. 20 (1966) 728.
[40] D. Kivelson, R. Neiman, J. Chem. Phys. 35 (1961) 149.
[41] R.K. Ray, G.B. Kauffman, Inorg. Chem. Acta 174 (1990) 257–262.
[42] K. Jayasubramanian, S.A. Samath, S. Thambidurai, R. Murugesan, S.K. Rama-
lingam, Trans. Met. Chem. 20 (1995) 76.
[43] V.S.X. Anthonisamy, R. Murugesan, Chem. Phys. Lett. 287 (1998) 353.
[44] V.S.X. Anthonisamy, R. Anantharam, R. Murugesan, Spectrochim. Acta. A55 135
(1999).
References
[1] D.A. Horton, G.T. Bourne, M.L. Smythe, Chem. Rev. 103 (2003) 893.
[2] H. Kucukbay, R. Durmaz, E. Orhan, S. Gunal, II Farmaco 58 (2003) 431.
[3] V.K. Limesova, J. Koci, K. Waisser, J. Kaustova, II Farmaco 57 (2002)
259.
[4] Y. He, B. Wu, J. Yang, D. Robinson, L. Risen, R. Ranken, L. Blyn, S. Sheng, E.E.
Swayze, Bioorg. Med. Chem. Lett. 13 (2003) 3253.
[5] G. Ayhan, N. Altanlar, II Farmaco 58 (2003) 1345.
[6] N.S. Pawar, D.S. Dalal, S.R. Shimpi, P.P. Mahulikar, Eur. J. Pharm. Sci. 21 (2004)
115.
[45] B.D. Cullity, Elements of X-ray Diffraction, second ed., Addison-Wesley Inc.,
1993.
[7] N.B. Shailendra, M.T.G. Garza, D.E.C. Vega, J. Castrogarza, K. saleem, F. Naqui,
M.R. Maurya, A. Azam, Med. Chem. Lett. 12 (2002) 869.