H. Wang et al. / Journal of Alloys and Compounds xxx (2013) xxx–xxx
[6] L. George, S.K. Saxena, Int. J. Hydrogen Energy 35 (2010) 5454–5470.
5
off a lot of heat. Additionally, the negative effect of passivation
Mg(OH)2 on the continuous hydrolysis reaction of MgH2 can be
eliminated, because the MgH2 is obtained by in situ decomposition.
Comparatively, the MgH2–NaH mixture by hand milling also shows
fast hydrolysis reaction rate but lower hydrogen yield of 1280 ml/
g, indicating that the hydrolysis reaction of the remained MgH2
were blocked by the outside Mg(OH)2 layer.
[7] J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, Chem. Soc Rev. 39 (2010) 656–675.
[8] P.E. de Jongh, P. Adelhelm, ChemSusChem 3 (2010) 1332–1348.
[9] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Mater. 22 (2010) E1–E35.
[10] A. Zaluska, L. Zaluski, J. Alloys Comp. 288 (1999) 217–225.
[11] W.Y. Li, C.S. Li, H. Ma, J. Chen, J. Am. Chem. Soc. 129 (2007) 6710–6711.
[12] X.D. Yao, G.Q. Lu, Chin. Sci. Bull. 53 (2008) 2421–2431.
[13] L.P. Ma, X.D. Kang, H.B. Dai, Y. Liang, Z.Z. Fang, P.J. Wang, P. Wang, H.M. Cheng,
Acta Mater. 57 (2009) 2250–2258.
[14] J.L. Qu, W.T. Wang, L. Xie, J. Zheng, Y. Liu Y, X.G. Li, J. Power Sources 186 (2009)
515–520.
[15] K.F. Aguey-Zinsou, J.R. Ares-Fernandez, Energy Environ. Sci. 3 (2010) 526–543.
[16] D.A. Sheppard, M. Paskevicius, C.E. Buckley, J. Alloys Comp. 492 (2010) L72–
L74.
4. Conclusions
We report the addition of NaH and its improving effect on the
hydrogen storage properties and the hydrolysis properties of
MgH2, which correlates with the formation of ternary hydride
NaMgH3. The NaMgH3 crystallizes in the perovskite structure that
enables fast hydrogen motion at a broad temperature range, and
thereby could acts as fast hydrogen diffusion pathways to enhance
the hydriding/dehydriding of MgH2. The NaMgH3 also shows fast
hydrolysis reaction kinetics without any passivation. This work
enlightens us to develop cheaper additives, such as NaOH, to re-
place NaH as efficient catalysts for the high-capacity hydrogen
storage materials, the related work is currently underway.
[17] J. Lang, J. Huot, J. Alloys Comp. 509 (2011) L18–L22.
[18] K.J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan, J.J.
Urban, Nature Mater. 10 (2011) 286–290.
[19] R.A. Varin, L. Zbroniec, M. Polanski, J. Bystrzycki, Energy 4 (2011) 1–25.
[20] H.Y. Shao, K. Asano, H. Enoki, E Akiba, J. Alloys Comp. 477 (2009) 301–306.
[21] H.C. Zhong, H. Wang, J.W. Liu, D.L. Sun, M. Zhu, Scr. Mater. 65 (2011) 285–287.
[22] J.J. Vajo, F. Mertens, C.C. Ahn, R.C. Bowman, B. Fultz, J. Phys. Chem. B 108 (2004)
13977–13983.
[23] T.Z. Si, Y.F. Liu, Q.A. Zhang, J. Alloys Comp. 507 (2010) 489–493.
[24] J. Yang, A. Sudik, D.J. Siegel, D. Halliday, A. Drews, R.O. Carter, C. Wolverton,
et al., J. Alloys Comp. 446 (2007) 345–349.
[25] K. Ikeda, S. Kato, Y. Shinzato, N. Okuda, Y. Nakamori, A. Kitano, H. Yukawa, M.
Morinaga, S. Orimo, J. Alloys Comp. 446–447 (2007) 162–165.
[26] K. Ikeda, Y. Kogure, Y. Nakamori, S. Orimo, Scr. Mater. 53 (2005) 319–322.
[27] D.A. Sheppard, M. Paskevicius, C.E. Buckley, Chem. Mater. 23 (2011) 4298–
4300.
Acknowledgements
[28] D.T. Shane, R.L. Corey, R.C. Bowman, J.R. Zidan, A.C. Stowe, S.J. Hwang, C. Kim,
M.S. Conrad, J. Phys. Chem. C 113 (2009) 18414–18419.
This work was financially supported by the Ministry of Science
and Technology of China Under Grant No. 2010CB631302, Natural
Science Foundation of China Under Grant No. 51071068, and KLG-
HEI (KLB11003).
[29] H. Wu, W. Zhou, T.J. Udovic, J.J. Rush, T. Yildirim, Chem. Mater. 20 (2008)
2335–2342.
[30] E.Y. Marrero-Alfonso, A.M. Beaird, T.A. Davis, M.A. Matthews, Ind. Eng. Chem.
Res. 48 (2009) 3703–3712.
[31] M.Q. Fan, L.X. Sun, F. Xu, Energy 35 (2010) 1333–1337.
[32] Z.Y. Deng, J.M.F. Ferreira, Y. Sakka, J. Am. Ceram. Soc. 91 (2008) 3825–3834.
[33] M.H. Grosjeana, M. Zidoune, L. Roué, J.Y. Huot, Int. J. Hydrogen Energy 31
(2006) 109–119.
References
[34] L.Z. Ouyang, Y.J. Xu, H.W. Dong, L.X. Sun, M. Zhu, Int. J. Hydrogen Energy 34
(2009) 9671–9676.
[35] H.C. Zhong, H. Wang, L.Z. Ouyang, M. Zhu, J. Alloys Comp. 509 (2011) 4268–
4272.
[36] S.Q. Hao, S.S. David, Appl. Phys. Lett. 93 (2008) (1903) 251901–251903.
[37] M. Hayoun, M. Meyer, A. Denieport, Acta Mater. 53 (2005) 2867–2874.
[38] C.C. Nwakwuo, J.L. Hutchison, J.M. Sykes, Scr. Mater. 66 (2012) 175–177.
[39] K. Ikeda, Y. Nakamori, S. Orimo, Acta Mater. 53 (2005) 3453–3457.
[1] DOE Annual Report on Hydrogen and Fuel Cells Program Plan, 2011. <http://
[2] S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, Catal. Today 120 (2007)
246–256.
[3] I.P. Jain, P. Jain, A. Jain, J. Alloys Comp. 503 (2010) 303–339.
[4] S. Orimo, Y. Nakamori, J.R. Eliseo, A. Zuttel, C.M. Jensen, Chem. Rev. 107 (2007)
4111–4132.
[5] P. Chen, M. Zhu, Mater. Today 11 (2008) 36–43.