J. Am. Chem. Soc. 2001, 123, 10405-10406
Asymmetric Catalysis of Planar-Chiral
10405
Cyclopentadienylruthenium Complexes in Allylic
Amination and Alkylation
Yuji Matsushima,† Kiyotaka Onitsuka,† Teruyuki Kondo,‡
Take-aki Mitsudo,‡ and Shigetoshi Takahashi*,†
The Institute of Scientific and Industrial Research
Osaka UniVersity, Ibaraki, Osaka 567-0047, Japan
Department of Energy and Hydrocarbon Chemistry
Graduate School of Engineering, Kyoto UniVersity
Sakyo-ku, Kyoto 606-8501, Japan
Enantioselective allylic substitutions catalyzed by transition
metal complexes provide a powerful method for constructing
complex organic molecules.11 Palladium-based catalysts have
often given excellent results. To expand the scope of the reaction,
however, extensive studies on alternative metal catalysts have been
performed.12 Although some ruthenium complexes show high
catalytic activity for allylic substitutions,13 an asymmetric version
of such catalysis is still unknown. We describe here new
enantioselective allylic amination and alkylation catalyzed by
planar-chiral ruthenium complexes 1.
ReceiVed June 2, 2001
ReVised Manuscript ReceiVed September 2, 2001
A great deal of effort has been directed toward the molecular
design of chiral organometallic complexes, which are key to the
development of transition metal-catalyzed asymmetric reactions.1
Organometallic complexes bearing various chiral ligands such as
chiral phosphines and amines are recognized as effective asym-
metric catalysts.2 In addition, increasing attention has been paid
to other types of optically active complexes.3,4 Planar-chiral
complexes formed by π-coordination of prochiral unsaturated
hydrocarbons fall in this latter category. The efficiency of planar
chirality in asymmetric catalysis has been demonstrated by using
early transition-metal complexes such as ansa-metallocenes.5
There has been only one report, which showed low enantio-
selectivity, on the use of planar-chiral complexes of late transition
metals as catalysts (type A).6 Hayashi7 and recently Fu8 have
studied asymmetric catalysis using planar-chiral ferrocene deriva-
tives. In their system, metal species other than stable metal
moieties that generate planar chirality, which simply serve as a
bulky substituent, act as a reactive center of the catalyst (type
B). Recently, we prepared novel planar-chiral cyclopentadienyl-
ruthenium complexes,9 and found that ruthenium complexes (1)
with an anchor phosphine ligand can control metal-centered
chirality with high selectivity.10 These results prompted us to
develop a novel asymmetric reaction using complexes 1 as Type
A catalyst.
Our initial experiments focused on the allylic amination with
complex 1 as a catalyst. Representative results are shown in Table
1. Thus, the reaction of 1,3-diphenyl-2-propenyl ethyl carbonate
(2) with 1.1 equiv of di-n-propylamine in the presence of 5 mol
% of (S)-1 proceeded smoothly at 20 °C to give the allylic
aminated product (3) in a quantitative yield with 35% ee (Entry
1). Although the reaction with complex (S)-1b in place of (S)-1a
gave similar results (90% yield, 20% ee), the product had a
specific rotation with a sign opposite that obtained by (S)-1a
(Entry 2). A bulkier substituent at the 4-position of the cyclo-
pentadienyl ring increased the enantioselectivity to 64% ee (Entry
3), while a longer tether slightly decreased the enantioselectivity
(Entry 4). The reaction catalyzed by 1g which has no tether
between the cyclopentadienyl and phosphine ligands, also pro-
ceeded with high enantioselectivity (Entry 7). The enantioselec-
tivity was improved by using (S)-1f , which has 3,5-dimethyl-
phenyl groups on the anchor phosphorus atom (Entry 6). In the
† Osaka University.
‡ Kyoto University.
(1) ComprehensiVe Asymmetric Catalysis I-III; Jacobsen, E. N., Pflatz,
A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, Germany, 1999.
(2) For recent reviews, see: (a) Ghosh, A. K.; Mathivanan, P.; Cappiello,
J. Tetrahedron: Asymmetry 1998, 9, 1. (b) Helmchen, G.; Pfaltz, A. Acc.
Chem. Res. 2000, 33, 336. (c) Hayashi, T. Acc. Chem. Res. 2000, 33, 354. (d)
Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. ReV. 2000,
100, 2159. (e) Mun˜iz, K.; Bolm, C. Chem. Eur. J. 2000, 6, 2309.
(3) For reviews of planar-chiral complexes, see: (a) Halterman, R. L. Chem.
ReV. 1992, 92, 965. (b) Iwata, C.; Takemoto, Y. Chem. Commun. 1996, 2797.
(c) Schmalz, H.-G.; Siegel, S. In Transition Metals for Organic Synthesis:
Building Blocks and Fine Chemicals; Beller, M., Bolm, C., Eds.; Wiley-
VCH: Weinheim, Germany, 1998; Vol. 1, p 550.
(10) (a) Matsushima, Y.; Onitsuka, K.; Takahashi, S. Chem. Lett. 2000,
760. (b) Onitsuka, K.; Dodo, N.; Matsushima, Y.; Takahashi, S. Chem.
Commun. 2001, 521. (c) Onitsuka, K.; Ajioka, Y.; Matsushima, Y.; Takahashi,
S. Organometallics 2001, 20, 3274.
(4) For reviews of metal-centered chiral complexes, see: (a) Brunner, H.
Angew. Chem., Int. Ed. 1999, 38, 1194. (b) Brunner, H. Eur. J. Inorg. Chem.
2001, 905.
(5) For reviews, see: (a) Hoveyda, A. H.; Morken, J. P. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 1262. (b) Hoveyda, A. H.; Morken, J. P. In
Metallocenes: Synthesis‚ReactiVity‚Applications; Togni, A., Halterman, R.
L., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Vol. 2, p 626.
(6) Trost, B. M.; Vidal, B.; Thommen, M. Chem. Eur. J. 1999, 5, 1055.
(7) For reviews, see: Hayashi, T. In Ferrocenes: Homogeneous Catalysis,
Organic Synthesis, Materials Science; Togni, A., Hayashi, T., Eds.; Wiley-
VCH: Weinheim, Germany, 1995; p 105. (b) Togni, A. In Metallocenes:
Synthesis‚ReactiVity‚Applications; Togni, A., Halterman, R. L., Eds.; Wiley-
VCH: Weinheim, Germany, 1998; Vol. 2, p 685.
(8) For a review and recent references, see: (a) Fu, G. C. Acc. Chem. Res.
2000, 33, 412. (b) Shintani, R.; Lo, M. M. C.; Fu, G. C. Org. Lett. 2000, 2,
3695. (c) Tao, B.; Lo, M. M. C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 353.
(9) (a) Dodo, N.; Matsushima, Y.; Uno, M.; Onitsuka, K.; Takahashi, S. J.
Chem. Soc., Dalton Trans. 2000, 35. (b) Matsushima, Y.; Komatsuzaki, N.;
Ajioka, Y.; Yamamoto, M.; Kikuchi, H.; Takata, Y.; Dodo, N.; Onitsuka, K.;
Uno, M.; Takahashi, S. Bull. Chem. Soc. Jpn. 2001, 74, 527.
(11) For reviews, see: (a) Hayashi, T. In Catalytic Asymmetric Synthesis;
Ojima, I., Ed.; VCH: New York, 1993; p 325. (b) Reiser, O. Angew. Chem.,
Int. Ed. Engl. 1993, 32, 547. (c) Trost, B. M.; Van Vranken, D. L. Chem.
ReV. 1996, 96, 395. (d) Johannsen, M.; Jørgensen, K. A. Chem. ReV. 1998,
98, 1689. (e) Sesay, S. J.; Williams, J. M. J. AdV. Asymmetric Synth. 1998, 3,
235. (f) Helmchen, G. J. Organomet. Chem. 1999, 576, 203.
(12) For recent leading references, see: (a) Lloyd-Jones, G. C.; Pfaltz, A.
Angew. Chem., Int. Ed. Engl. 1993, 32, 547. (b) Trost, B. M.; Hachiya, I. J.
Am. Chem. Soc. 1998, 120, 1104. (c) Glorius, F.; Pfaltz, A. Org. Lett. 1999,
1, 141. (d) Bartels, B.; Helmchen, G. Chem. Commun. 1999, 741. (e) Blacker,
A. J.; Clark, M. L.; Williams, J. M. J.; Loft, M. S. Chem. Commun. 1999,
913. (f) Evans, P. A.; Kennedy, L. J. J. Am. Chem. Soc. 2001, 123, 1234.
(13) (a) Zhang, S.-W.; Mitsudo, T.; Kondo, T.; Watanabe, Y. J. Organomet.
Chem. 1993, 450, 197. (b) Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.;
Watanabe, Y. Organometallics 1995, 14, 1945. (c) Morisaki, Y.; Kondo, T.;
Mitsudo, T. Organometallics 1999, 18, 4742. (d) Kondo, T.; Morisaki, Y.;
Uenoyama, S.; Wada, K.; Mitsudo, T. J. Am. Chem. Soc. 1999, 121, 8657.
10.1021/ja016334l CCC: $20.00 © 2001 American Chemical Society
Published on Web 09/27/2001