thermal diffusivity values at room temperature are 0.157, 0.139
2 (a) E. Tang, Y.-M. Dai, J. Zhang, Z.-J. Li, Y.-G. Yao, J. Zhang and
X.-D. Huang, Inorg. Chem., 2006, 45, 6276; (b) M. P. Suh, Y. E. Cheon
and E. Y. Lee, Chem.–Eur. J., 2007, 13, 4208; (c) W.-X. Chen, S.-T. Wu,
L.-S. Long, R.-B. Huang and L.-S. Zheng, Cryst. Growth Des., 2007, 7,
1171.
3 (a) E. R. Cooper, C. D. Andrews, P. S. Wheatley, P. B. Webb, P. Wormald
and R. E. Morris, Nature, 2004, 430, 1012; (b) E. R. Parnham, P. S.
Wheatley and R. E. Morris, Chem. Commun., 2006, 380; (c) E. R.
Parnham and R. E. Morris, J. Am. Chem. Soc., 2006, 128, 2204; (d) E.
R. Parnham and R. E. Morris, Chem. Mater., 2006, 18, 4882; (e) E. A.
Drylie, D. S. Wragg, E. R. Parnham, P. S. Wheatley, A. M. Z. Slawin,
J. E. Warren and R. E. Morris, Angew. Chem., Int. Ed., 2007, 46, 7839.
2
-1
and 0.151 mm S K for 1 to 3 respectively and decrease with the
increase of temperature. Such low thermal diffusivity values are
close to that of plastic, indicating that ionothermally synthesized
compounds may be good candidates for heat-resistant materials.
Since 1 and 2 are isostructural, the observed thermal diffusivity
of 1 which is higher than that of 2 indicates that it is the density
of the framework that plays a key contribution to their thermal
diffusivity, and the higher the density of the framework, the lower
the thermal diffusivity. This result is different from that reported
by J. M. Devi and coworkers, in which the thermal diffusivity of
the complexes increases with the decrease in the mass and increase
4
(a) K. Jin, X. Huang, L. Pang, J. Li, A. Appel and S. Wherland, Chem.
Commun., 2002, 2872; (b) D. N. Dybtsev, H. Chun and K. Kim, Chem.
Commun., 2004, 1594; (c) Z. Lin, D. S. Wragg and R. E. Morris, Chem.
Commun., 2006, 2021; (d) S. Chen, J. Zhang and X. Bu, Inorg. Chem.,
19
in the free electron density of the metal ion coordinated. It was
mentioned that, although the density of 3 is close to that of 2, and
significantly larger than that of 1, the thermal diffusivity of 3 is
close to that of 1, instead of close to that of 2, which may be due
to the fact that the structure of 3 is different from those of 1 and 2.
2
008, 47, 5567.
5
(a) J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer,
G. A. Broker and R. D. Rogers, Green Chem., 2001, 3, 156; (b) R. D.
Rogers and K. R. Seddon, Science, 2003, 302, 792; (c) K. E. Gutowski,
G. A. Broker, H. D. Willauer, J. G. Huddleston, R. P. Swatloski, J. D.
Holbrey and R. D. Rogers, J. Am. Chem. Soc., 2003, 125, 6632; (d) R.
Ludwig and U. Kragl, Angew. Chem., Int. Ed., 2007, 46, 6582.
Conclusions
6 (a) L. Xu, E. Y. Choi and Y. U. Kwon, Inorg. Chem., 2007, 46, 10670.
7
(a) Z. Lin, D. S. Wragg, J. E. Warren and R. E. Morris, J. Am. Chem.
Soc., 2007, 129, 10334; (b) Z. Lin, A. M. Z. Slawin and R. E. Morris,
J. Am. Chem. Soc., 2007, 129, 4880; (c) L. Xu, E. Y. Choi and Y. U.
Kwon, Inorg. Chem., 2008, 47, 1907; (d) L. Xu, S. Yan, E. Y. Choi, J. Y.
Lee and Y. U. Kwon, Chem. Commun., 2009, 3431.
In summary, three metal–organic frameworks based on linear
trinuclear clusters as 8-connected nodes were prepared under
ionothermal conditions. All the compounds feature the same a
2
4
4
(
4 )(6 ) topology. Their structures are significantly different from
8 (a) E. R. Parnham and R. E. Morris, Acc. Chem. Res., 2007, 40, 1005;
(
b) R. E. Morris, Chem. Commun., 2009, 2990.
those obtained from hydrothermal or solvothermal reactions,
indicating that ionic liquids serve as the cationic structure-
directing agent in the formation of the host networks. Magnetic
property measurement reveals that all compounds display anti-
ferromagnetic coupling, while the thermal diffusivity study shows
that their thermal diffusivity is in the order of 1 > 3 > 2.
9
W.-X. Chen, Y.-P. Ren, L.-S. Long, R.-B. Huang and L.-S. Zheng,
CrystEngComm, 2009, 11, 1522.
10 SHELXTL 6.10, Bruker Analytical Instrumentation, Madison, WI,
2000.
1
1
1 B. Kersting, Angew. Chem., Int. Ed., 2001, 40, 3987.
2 H. Adams, S. Clunas, D. E. Fenton and D. N. Towers, J. Chem. Soc.,
Dalton Trans., 2002, 3933.
We thank the NNSFC (Grant Nos. 20825103, 90922031 and
13 F. Luo, J.-M Zheng and G. J. Long, Cryst. Growth Des., 2009, 9,
1
271.
2
1021061), the 973 project (Grant 2007CB815304) from MSTC
1
1
1
1
4 F. Luo, Y.-X. Che and J.-M. Zheng, Cryst. Growth Des., 2009, 9, 1066.
for the financial support.
5 A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, C34.
6 O. Kahn, Molecular Magnetism, VCH, New York, 1993.
7 (a) J. M. Herrera, A. Bleuzen, Y. Dromz e´ e, M. Julve, F. Lloret and M.
Verdaguer, Inorg. Chem., 2003, 42, 7052; (b) D. Maspoch, N. Domingo,
D. Ruiz-Molina, K. Wurst, J. M. Hern a´ ndez, G. Vaughan, C. Rovira,
F. Lloret, J. Tejada and J. Veciana, Chem. Commun., 2005, 5035.
References
1
(a) L. Pan, B. Parker, X. Huang, D. H. Olson, J. Y. Lee and J. Li, J. Am.
Chem. Soc., 2006, 128, 4180; (b) X.-J. Kong, Y.-P. Ren, P.-Q. Zheng,
Y.-X. Long, L.-S. Long, R.-B. Huang and L.-S. Zheng, Inorg. Chem.,
18 X.-N. Cheng, W.-X. Zhang, Y.-Y. Lin, Y.-Z. Zheng and X.-M. Chen,
Adv. Mater., 2007, 19, 1494.
19 J. M. Devi, P. Tharmaraj, S. K. Ramakrishnan and K. Ramachandran,
Mater. Lett., 2008, 62, 852.
2
006, 45, 10702; (c) X.-J. Kong, Y.-P. Ren, W.-X. Chen, L.-S. Long, Z.
Zheng, R.-B. Huang and L.-S. Zheng, Angew. Chem., Int. Ed., 2008,
7, 2398.
4
This journal is © The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 10237–10241 | 10241