146
G. Zhang et al. / Electrochimica Acta 80 (2012) 140–147
Furthermore, it is also noteworthy that this work may provide a
simple and efficient approach for the large-scale synthesis of other
3D complex metal oxide nanomaterials.
Acknowledgements
We gratefully acknowledge financial support from the National
Natural Science Foundation of China (Grant Nos. 21003041,
21103046), and Hunan Provincial Natural Science Foundation of
China (Grant Nos. 11FH003, 10JJ1011).
References
[1] M. Armand, J.M. Tarascon, Nature 451 (2008) 652.
[2] X.L. Sun, X.H. Wang, L. Qiao, D.K. Hu, N. Feng, X.W. Li, Y.Q. Liu, D.Y. He, Elec-
trochimica Acta 66 (2012) 204.
[3] J.S. Chen, L.A. Archer, X.W. Lou, Journal of Materials Chemistry 21 (2011) 9912.
[4] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407 (2000)
496.
[5] P.G. Bruce, B. Scrosati, J.M. Tarascon, Angewandte Chemie International Edition
47 (2008) 2930.
Fig. 10. Rate performances of the NiO nanospheres between 0 and 3.0 V at various
current densities.
[6] Y. Li, B. Tan, Y. Wu, Nano Letters 8 (2008) 265.
[7] C.C. Li, X.M. Yin, Q.H. Li, L.B. Chen, T.H. Wang, Chemistry – A European Journal
17 (2011) 1596.
[8] W. Xing, F. Li, Z.F. Yan, G.Q. Lu, Journal of Power Sources 134 (2004) 324.
[9] C.Y. Cao, W. Guo, Z.M. Cui, W.G. Song, W. Cai, Journal of Materials Chemistry 21
(2011) 3204.
[10] F. Jiao, A.H. Hill, A. Harrison, A. Berko, A.V. Chadwick, P.G. Bruce, Journal of the
American Chemical Society 130 (2008) 5262.
[11] T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, Advanced Materials 22 (2010)
347.
[12] C.Z. Yuan, X.H. Zhang, L.H. Su, B. Gao, L.F. Shen, Journal of Materials Chemistry
19 (2009) 5772.
[13] J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo, L. Kang, Chemical Communications 35
(2008) 4213.
[14] S. Needham, G. Wang, H. Liu, Journal of Power Sources 159 (2006) 254.
[15] X.H. Huang, J.P. Tu, C.Q. Zhang, F. Zhou, Electrochimica Acta 55 (2010) 8981.
[16] X. Song, L. Gao, Journal of Physical Chemistry C 112 (2008) 15299.
[17] L. Liu, Y. Li, S. Yuan, M. Ge, M. Ren, C. Sun, Z. Zhou, Journal of Physical Chemistry
C 114 (2010) 251.
[18] J.M. Ma, J.Q. Yang, L.F. Jiao, Y.H. Mao, T.H. Wang, X.C. Duan, J.B. Lian, W.J. Zheng,
CrystEngComm 14 (2012) 453.
[19] S.B. Ni, T. Li, X.L. Yang, Materials Chemistry and Physics 132 (2012) 1108.
[20] Y. Li, B. Tan, Y. Wu, Nano Letters 8 (2008) 265.
[21] M.H. Park, K. Kim, J. Kim, J. Cho, Advanced Materials 22 (2010) 415.
[22] J. Wang, G. Du, R. Zeng, B. Niu, Z. Chen, Z. Guo, S. Dou, Electrochimica Acta 55
(2010) 4805.
Fig. 11. The cyclic voltammogram (CV) curves of S-500 electrodes at a scan rate of
[23] B.H. Qu, M. Zhang, D.L. Lei, Y.P. Zeng, Y.J. Chen, L.B. Chen, Q.H. Li, Y.G. Wang,
T.H. Wang, Nanoscale 3 (2011) 3646.
0.5 mV s−1 over a potential range from 0 to 3.0 V.
[24] J.T. Zai, X.F. Qian, K.X. Wang, C. Yu, L.Q. Tao, Y.L. Xiao, J.S. Chen, CrystEngComm
14 (2012) 1364.
[25] L.S. Zhong, J.S. Hu, A.M. Cao, Q. Liu, W.G. Song, L.J. Wan, Chemistry of Materials
19 (2007) 1648.
[26] Y.L. Wang, X.C. Jiang, Y.N. Xia, Journal of the American Chemical Society 125
(2003) 16176.
[27] X.C. Jiang, Y.L. Wang, T. Herricks, Y.N. Xia, Journal of Materials Chemistry 14
(2004) 695.
[28] S. Laruelle, S. Grugeon, P. Poizot, M. Dollé, L. Dupont, J.M. Tarascon, Journal of
the Electrochemical Society 149 (2002) A627.
[29] Q.Q. Xiong, J.P. Tu, Y. Lu, J. Chen, Y.X. Yu, Y.Q. Qiao, X.L. Wang, C.D. Gu, Journal
of Physical Chemistry C 116 (2012) 6495.
NiO formation, accompanying the decomposition of Li2O [53,55].
During the anodic process, both the peak current and the inte-
grated area of the anodic peak are decreased, indicating capacity
loss during the charging process. In the subsequent 2nd and 3rd
cycles, the cathodic peak potentials shift to 1.02 and 1.03 V, respec-
tively. After the electrode activation during five cycles, the stable
electrochemical process has been set up.
[30] Y. Cheng, Y.S. Wang, Y.H. Zheng, Y. Qin, Journal of Physical Chemistry B 109
(2005) 11548.
4. Conclusions
[31] R.L. Penn, Journal of Physical Chemistry B 108 (2004) 12707.
[32] J. Park, V. Privman, E. Matijevic, Journal of Physical Chemistry B 105 (2001)
11630.
[33] L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, L.J. Wan, Advanced Materials
18 (2006) 2426.
[34] B.Q. Liu, Q.F. Li, B. Zhang, Y.L. Cui, H.F. Chen, G.N. Chen, D.P. Tang, Nanoscale 3
(2011) 2220.
[35] D.W. Liu, B.B. Garcia, Q.F. Zhang, Q. Guo, Y.H. Zhang, S. Sepehri, G.Z. Cao,
Advanced Functional Materials 19 (2009) 1015.
[36] C.M. Park, J.K. Jeon, Chemical Communications 47 (2011) 2122.
[37] X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Chemistry of Materials 20 (2008) 6562.
[38] H.S. Zhou, D.L. Li, M. Hibino, I. Honma, Angewandte Chemie International Edi-
tion 44 (2005) 797.
[39] S.M. Yuan, J.X. Li, L.T. Yang, L.W. Su, L. Liu, Z. Zhou, Applied Materials & Interfaces
3 (2011) 705.
[40] C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chemical Reviews 105 (2005)
1025.
[41] H. Liu, G.X. Wang, J. Liu, S.Z. Qiao, H. Ahn, Journal of Materials Chemistry 21
(2011) 3046.
We have developed a facile approach to produce porous NiO
nanospheres. The grain size and surface area of as-synthesized
porous NiO nanospheres can be tuned using the annealing tem-
perature. The as-synthesized porous NiO nanospheres have been
applied as the anode of LIBs. Compared with the S-300 nanospheres,
the S-500 electrode exhibits superior cycling performance and
higher rate capability. It can deliver a high reversible capacity up
to ∼447 mAh g−1 after 80 cycles at a current density of 100 mA g−1
,
and a capacity up to 582 mAh g−1 in the 60th cycle after cycling
with various current densities from 100 to 8000 mA g−1. Even at a
current density as high as 8000 mA g−1, the electrode can deliver
a capacity higher than 228 mAh g−1. The electrochemical enhance-
ment of S-500 could be mainly ascribed to its appropriate grain
size and the robust porous structure with improved crystallinity.