M.S. Masoud et al. / Spectrochimica Acta Part A 60 (2004) 1907–1915
[3] S. Ljungquist, T. Lindahl, J. Biol. Chem. 249 (1974) 1530.
1915
Table 10
Electrical conductivity parameters of adenine and guanine complexes
[4] G.L. Eichhorn, in: G. L. Eichhorn (Ed.), Inorganic Biochemistry,
vol. 2, Elsevier, New York, 1973, p. 1191, 1210.
◦
Complex
Region
ꢀE (eV)
log σ
Transition
temperatures
[
[
5] M.S. Masoud, S.S. Haggag, Thermochim. Acta 196 (1922) 221.
6] M.S. Masoud, S.A. Abou El-Enein, O.F. Hafez, J. Thermal Anal. 38
(1992) 1365.
−
1
−1
(ꢁ
cm )
Co-adenine
A
B
C
D
E
1.464
0.475
0.043
7.8
8.7
9.6
10.1
9.35
571.43
526.32
473.93
425.35
[7] M.S. Masoud, Z.M. Zaki, F.M. Ismail, A.K. Mohamed, Z. Fur Phys.
Chem. 185 (1994) 223.
[8] M.S. Masoud, O.H.A. El-Hamid, Z.M. Zaki, Trans. Met. Chem. 19
(1994) 21.
−0.119
−0.277
[9] M.S. Masoud, S.S. Haggag, Z.M. Zaki, M. El-Shabasy, Spectrosc.
Ni-adenine
Cu-adenine
A
B
C
D
1.765
0.232
7.6
9.6
11.0
8.7
571.43
476.19
369.00
Lett. 27 (1994) 775.
10] M.S. Masoud, A.A. Hasanein, A.K. Ghonaim, E.A. Khalil, A.A.
Mahmoud, Z. Fur Phys. Chem. 209 (1999) 223.
11] M.S. Masoud, E.A. Khalil, A.A. Ibrahim, A.A. Marghany, Z. Fur
Phys. Chem. 211 (1999) 13.
[12] M.S. Masoud, H.H. Hamoud, Ultra Sci. Phys. Sci. 12 (2000) 12.
[13] M.S. Masoud, A.K. Ghonaium, R.H. Ahmed, A.A. Mahmoud, A.E.
Ali, Z. Fur Phys. Chem. 513 (2000) 215.
[14] M.S. Masoud, A.K. Ghonaim, R.H. Ahmed, S.A. Abou El-Enein,
A.A. Mohamed, J. Coord. Chem. 55 (2002) 79.
15] A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, fourth
ed., Longmann, London, 1978, p. 116, 452.
16] P.H. Lee, E. Griswold, J. Kleinberg, Inorg. Chem. 3 (1964) 1278.
17] D. Reinen, G. Friebel, Inorg. Chem. 23 (1984) 791.
[
−0.269
0.102
[
A
B
C
D
E
1.492
0.250
0.011
6.8
9.4
10.2
11.5
9.4
529.10
438.09
370.37
331.13
−0.179
0.073
Co-guanine
Ni-guanine
A
B
C
D
0.604
−0.198
−0.784
−1.112
1.279
0.083
−0.851
−0.239
0.031
8.75
480.77
711.52
334.45
[
10.3
12.6
8.1
[
[
A
B
C
D
E
8.4
9.9
12.6
9.24
7.4
578.03
483.09
392.16
322.58
[18] N.B. Figgs, J. Lewis, Modern Coordination Chemistry, Interscience,
New York, 1967, p. 403.
[19] S. Shirotake, Chem. Pharm. Bull. 28 (1980) 1673.
[20] R. Savoic, J.J. Jutier, L. Prizant, A.L. Beauchamp, Spectrosc. Chim.
Acta 38 (1982) 561.
[
21] J. Brigando, D. Colitis, M. Morel, Bull. Soc. Chem. Fr. 3445 (1969)
Cu-guanine
A
B
C
2.104
0.462
−0.159
5
7.3
10.3
496.89
371.75
3449.
[
22] T. Fujita, T. Sakaguchi, Chem. Pharm. Bull. 25 (1977) 1055.
23] A.N. Speca, C.M. Mikulski, F.J. Iaconianni, L.L. Pytlewski, N.M.
Karayannies, J. Inorg. Nucl. Chem. 43 (1981) 2771.
[
[
24] A.N. Speca, L.L. Pytlewski, C.M. Mikulski, N.M. Karayanni, Inorg.
Chim. Acta 66 (1982) 153.
within the range of −0.269 to 1.464 eV. The data revealed the
semi-conducting behaviour of these complexes. The ꢀE −
[25] A. Lautie, A. Novak, J. Chem. Biol. 65 (1968) 1359.
◦
log σ relation for the adenine complexes gave the following
[26] D.B. Brawn, J.W. Hall, H.M. Helis, E.G. Walton, D.J. Hodgson,
◦
empirical equation: ꢀE = −1.579 log σ + 0.984.
W.E. Halfield, Inorg. Chem. 16 (1977) 2675.
[
[
[
[
27] E. Sletten, Acta Crystallogr. B 25 (1969) 1480.
The electrical conductivity patterns of (1:2) cobalt, (2:3)
nickel and (1:1) copper complexes of guanine showed four,
five and three regions, respectively, with transition tempera-
tures of 480.77, 411.52 and 334.45, 578.03, 483.09, 392.16
and 322.58, and 496.89 and 371.75 K, respectively, and ac-
tivation energies ranged from −0.112 to 2.164 eV. Regions
B–D, and B and C of Co and Cu complexes, respectively,
are due to the desolvation process of the complexes and re-
gion A is due to the partial decomposition of the complexes.
Whereas, in case of nickel complex, all the five regions are
due to the desolvation process of the complex (Table 10).
28] R. Weiss, H. Venner, H. Seyler, Z. Physiol. Chem. 33 (1963) 169.
29] W. Levason, C.M. MacAulife, Inorg. Chim. Acta 14 (1975) 127.
30] S.C. Bhtia, J.M. Bindlish, A.R. Saini, P.C. Jain, J. Chem. Soc.,
Dalton Trams. (1981) 1773.
[31] G. Karagonins, O. Peter, Z. ElectroChem. Ber. Eunsenges Phys.
Chem. 63 (1959) 1170.
[
32] C.H. Macgillavery, G.D. Rieckin, in: K. Lonsdale (Ed.), International
Tables for X-ray Crystallography: Physical and Chemical Tables,
vol. 3, 1962.
[33] I. Saski, D. Pujol, A. Gauderner, A. Chiaroni, C. Riche, Polyhedron
6 (1987) 2103.
[34] R.K. Parasher, R.C. Sharma, A. kumar, G. Hohan, Iinorg. Chim.
◦
Acta 72 (1988) 201.
The ꢀE − log σ curve gave the following empirical equa-
[
[
35] D. Kirelson, R. Neiman, J. Chem. Phys. 35 (1961) 149.
36] H.A. Kuska, M.T. Rogers, R.E. Drullinger, J. Phys. Chem. 71 (1967)
109.
tion for the conduction of the studied guanidine complexes:
◦
ꢀ
E = −2.172 log σ + 9.559.
[
[
37] J.I. Zink, R.S. Drago, J. Am. Chem. Soc. 94 (1972) 44550.
38] D.R. Lorenz, J.R. Wasson, D.K. Johonson, D.A. Thorpe, J. Inorg.
Nucl. Chem. 37 (1975) 2297.
References
[39] D.K. Johonson, H.J. Stklosa, J.R. Wasson, W.L. Seebach, J. Inorg.
Nucl. Chem. 37 (1975) 1397.
[40] B.A. Stastry, S.M. Asdullah, G. Ponticelli, M. Massacesi, J. Chem.
Phys. 70 (1979) 2834.
[
1] L.J. Berliner, S.S. Wong, Biochemistry 14 (1975) 4977.
[2] L. Grossman, A. Braun, R. Feldberg, I. Mahler, Ann. Rev. Biochem.
4
4 (1975) 19.
[41] M.H. Sonar, A.S.R. Murty, J. Inorg. Nucl. Chem. 42 (1980) 815.