Inorganic Chemistry
Article
(11) Zhang, Y.; Riduan, S. N.; Wang, J. Redox Active Metal- and
Covalent Organic Frameworks for Energy Storage: Balancing Porosity
and Electrical Conductivity. Chem. - Eur. J. 2017, 23, 16419−16431.
(12) Maiti, S.; Pramanik, A.; Manju, U.; Mahanty, S. Reversible
Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal−
Organic Framework with High Capacity and Rate Performance. ACS
Appl. Mater. Interfaces 2015, 7, 16357−16363.
(13) Li, C.; Lou, X.; Shen, M.; Hu, X.; Guo, Z.; Wang, Y.; Hu, B.;
Chen, Q. High Anodic Performance of Co 1,3,5-Benzenetricarboxylate
Coordination Polymers for Li-Ion Battery. ACS Appl. Mater. Interfaces
2016, 8, 15352−15360.
(14) Li, C.; Hu, X.; Lou, X.; Zhang, L.; Wang, Y.; Amoureux, J.; Shen,
M.; Chen, Q.; Hu, B. The Organic-Moiety-Dominated Li+
Intercalation/Deintercalation Mechanism of a Cobalt-Based Metal−
Organic Framework. J. Mater. Chem. A 2016, 4, 16245−16251.
(15) Li, C.; Hu, X.; Tong, W.; Yan, W.; Lou, X.; Shen, M.; Hu, B.
Ultrathin Manganese-Based Metal-Organic Framework Nanosheets:
Low-Cost and Energy-Dense Lithium Storage Anodes with the
Coexistence of Metal and Ligand Redox Activities. ACS Appl. Mater.
Interfaces 2017, 9, 29829−29838.
(16) Ning, Y.; Lou, X.; Li, C.; Hu, X.; Hu, B. Ultrathin Cobalt-Based
Metal-Organic Framework Nanosheets with Both Metal and Ligand
Redox Activities for Superior Lithium Storage. Chem. - Eur. J. 2017, 23,
15984−15990.
Anode Material for Lithium-Ion Battery. Microporous Mesoporous
Mater. 2016, 226, 353−359.
(29) Peng, C.; Ning, G.; Su, J.; Zhong, G.; Tang, W.; Tian, B.; Su, C.;
Yu, D.; Zu, L.; Yang, J.; Ng, M.; Hu, Y.; Yang, Y.; Armand, M.; Loh, K.
P. Reversible Multi-Electron Redox Chemistry of Π-Conjugated N-
containing Heteroaromatic Molecule-Based Organic Cathodes. Nat.
Energy 2017, 2, 17074.
̀
(30) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribiere, P.;
Poizot, P.; Tarascon, J. M. Conjugated Dicarboxylate Anodes for Li-
ion Batteries. Nat. Mater. 2009, 8, 120−125.
(31) Gou, L.; Zhang, H.; Fan, X.; Li, D. Lithium Based Coordination
Polymer as Anode for Li-ion Battery. Inorg. Chim. Acta 2013, 394, 10−
14.
(32) Li, G.; Yang, H.; Li, F.; Cheng, F.; Shi, W.; Chen, J.; Cheng, P. A
Coordination Chemistry Approach for Lithium-Ion Batteries: The
Coexistence of Metal and Ligand Redox Activities in a One-
Dimensional Metal−Organic Material. Inorg. Chem. 2016, 55, 4935−
4940.
(33) Nam, K. W.; Kim, S.; Lee, S.; Salama, M.; Shterenberg, I.; Gofer,
Y.; Kim, J.; Yang, E.; Park, C. S.; Kim, J.; Lee, S.; Chang, W.; Doo, S.;
Jo, Y. N.; Jung, Y.; Aurbach, D.; Choi, J. W. The High Performance of
Crystal Water Containing Manganese Birnessite Cathodes for
Magnesium Batteries. Nano Lett. 2015, 15, 4071−4079.
(17) Wang, L.; Zhao, M.; Qiu, J.; Gao, P.; Xue, J.; Li, J. Metal Organic
Framework-Derived Cobalt Dicarboxylate as a High-Capacity Anode
Material for Lithium-Ion Batteries. Energy Technol. 2017, 5, 637−642.
(18) Li, Z.; Huang, X.; Sun, C.; Chen, X.; Hu, J.; Stein, A.; Tang, B.
Thin-Film Electrode Based On Zeolitic Imidazolate Frameworks (ZIF-
8 and ZIF-67) with Ultra-Stable Performance as a Lithium-Ion Battery
Anode. J. Mater. Sci. 2017, 52, 3979−3991.
(19) Fernandez De Luis, R.; Ponrouch, A.; Palacin, M. R.; Karmele
Urtiaga, M.; Arriortua, M. I. Electrochemical Behavior of [{Mn-
(Bpy)}(VO 3) 2]ap(H 2O) 1.24 and [{Mn(Bpy) 0.5}(VO 3) 2]ap(H
2O) 0.62 Inorganic-Organic Brannerites in Lithium and Sodium Cells.
J. Solid State Chem. 2014, 212, 92−8.
(20) He, Y.; Xu, N.; Yu, Y.; Geng, X.; Kan, W.; Chen, Q.; You, J.
Design of Coordination Polymers with High Anodic Capabilities for
Li-ion Batteries. Polyhedron 2017, 137, 278−283.
(21) Lin, Y.; Zhang, Q.; Zhao, C.; Li, H.; Kong, C.; Shen, C.; Chen,
L. An Exceptionally Stable Functionalized Metal−Organic Framework
for Lithium Storage. Chem. Commun. 2015, 51, 697−699.
(22) Tang, B.; Huang, S.; Fang, Y.; Hu, J.; Malonzo, C.; Truhlar, D.
G.; Stein, A. Mechanism of Electrochemical Lithiation of a Metal-
Organic Framework without Redox-Active Nodes. J. Chem. Phys. 2016,
144, 194702.
(23) Hu, H.; Lou, X.; Li, C.; Hu, X.; Li, T.; Chen, Q.; Shen, M.; Hu,
B. A Thermally Activated Manganese 1,4-Benzenedicarboxylate Metal
Organic Framework with High Anodic Capability for Li-ion Batteries.
New J. Chem. 2016, 40, 9746−9752.
(24) Hu, X.; Lou, X.; Li, C.; Chen, Q.; Yang, Q.; Hu, B.
Amorphization and Disordering of Metal−Organic Framework
Materials for Rechargeable Batteries by Thermal Treatment. New J.
Chem. 2017, 41, 6415−6419.
(25) Clegg, W.; Holcroft, J. M. Structural Variation in Mellitate
Complexes of First-Row Transition Metals: What Chance for Design?
Cryst. Growth Des. 2014, 14, 6282−6293.
(26) Robl, C.; Hentschel, S. {Co(H2O)2[C6(COO)6]}N4nEin
Neuartiges Kettenformiges Polyanion in Co3[C6(COO)6]·18H2O
̈
(Tricobalt (II) Mellitat Octadecahydrat)/{Co(H2O)2[C6(COO)6]}-
N4n−a Novel Chain-Like Polyanion in Co3[C6(COO)6]·18H2O
(Tricobalt (II) Mellitate Octadeca Hydrate). Zeitschrift fur Natur-
̈
forschung B 1991, 46, 1188−1192.
(27) Bai, L.; Tu, B.; Qi, Y.; Gao, Q.; Liu, D.; Liu, Z.; Zhao, L.; Li, Q.;
Zhao, Y. Enhanced Performance in Gas Adsorption and Li Ion
Batteries by Docking Li+ in a Crown Ether-Based Metal−Organic
Framework. Chem. Commun. 2016, 52, 3003−3006.
(28) Maiti, S.; Pramanik, A.; Manju, U.; Mahanty, S. Cu3(1,3,5-
Benzenetricarboxylate)2 Metal-Organic Framework: A Promising
G
Inorg. Chem. XXXX, XXX, XXX−XXX