DE SOUZA et al.
Table 3 Kinetic study results
TMS
Step
TFA
Ac
k0/s–1
Ea/kJ mol–1
k0/s–1
Ea/kJ mol–1
k0/s–1
Ea/kJ mol–1
1
2
3
4
2.1·1013
8.5·105
1.3·1029
3.0·102
108.8
66.4
4.6·106
3.5·1014
8.0·1010
–
67.0
196.0
205.0
–
1.1·1026
3.0·109
1.0·1031
–
165.0
75.0
400.0
–
471.5
88.7
105
References
300
600
900
1200
1 D. M. A. Melo, ‘Synthesis, properties, structure and
thermochemistry of addition compounds of lanthanide
(III) trifluoromethanesulphonates and
90
75
60
45
30
N,N-dimethylformamide(DMF)’ (in Portuguese).
Ph.D. Thesis, University of S. Paulo, 1989.
2 C. D. Garner and B. Hughes, Adv. Inorg. Chem.
Radiochem., 17 (1975) 1.
st
1
derivative
3 T. Fujinaga and I. Sakamoto, Pure Appl. Chem.,
52 (1980) 1387.
300
600
900
1200
4 S. I. Gutnikov, E. V. Karpova, M. A. Zakharov and
A. I. Boltalin, Russ. J. Inorg. Chem., 51 (2006) 541.
5 A. M. Garrido Pedrosa, M. S. C. C-mara,
F. M. M. Borges, H. K. S. Souza, H. Scatena Jr.,
D. M. A. Melo and L. B Zinner, J. Therm. Anal. Cal.,
73 (2003) 895.
nd
2
derivative
Observed
Calculated
6 O. Tokareva, D. S. Tereshchenko, A. I. Boltalin and
S. I. Troyanov, Russian J. Coord. Chem., 32 (2006) 663.
7 V. Zele×ák, Z. Vargová, Katalin Györyová,
E. Ve¹erníková and V. Balek, J. Therm. Anal. Cal.,
82 (2005) 747.
200
400
600
800
1000
1200
Temperature/K
Fig. 5 Observed and calculated TG curves for the
Ni(Ac)2·2H2O salt
8 K. Shanmuga Bharathi, S. Sreedaran, A. Kalilur Rahiman,
K. Rajesh and V. Narayanan, Polyhedron, 26 (2007) 3993.
9 N. Schultheiss, D. R. Powell and E. Bosch, J. Chem.
Crystallogr., 34 ( 2004) 785.
tion of TFA and Ac continues in step 4 with the for-
mation of NiO as a final residue. In the TMS case the
NiO residue was obtained in step 5.
10 R. M. Issa, S. A. Amer, I. A. Mansour and
A. I. Abdel-Monsef, J. Therm. Anal. Cal., 90 (2007) 261.
11 E. Szunyogová, K. Györyová, D. Hudecová, L. Piknová,
J. Chomi¹, Z. Vargová and V. Zele×ák. J. Therm. Anal.
Cal., 88 (2007) 219.
Conclusions
12 B. S. Garg, R. K. Sharma and E. Kundra, Transition Metal
Chem., 30 (2005) 552.
Thermal behavior of the nickel TMS, TFA and Ac
salts have not been described in the literature. The
thermal characterization was carried out by TG, DSC
while the kinetic study using a QBASIC program in-
fer the TG data as input. The proposed three mecha-
nism for the observed thermal decomposition consists
of consecutive of the organic intermediates. The
method previously introduced [8] showed a good
agreement with the plotted curves and suggests that
each peak correspond to more than one reaction. The
first and second derivatives indicated the high quality
of the optimization of the mass curves.
13 A .M. L. Silva, M. F. V. Moura, L. P. Mercuri,
A. M. E. Santo and J. R. Matos, Anais Assoc. Bras.
Quim., 47 (1998) 133.
14 W. W. Wendlant, Thermal Analysis, 3rd Ed., John Wiley
& Sons, Houston 1964.
15 M. E. Brown, Introduction to Thermal Analysis:
Techniques and Applications, Chapman and Hall, London
1988.
16 S. V Vyazovkin and A. I. Lesnikovich, Thermochim.
Acta, 165 (1990) 11.
17 A. M. G. Pedrosa, P. M. Pimentel, D. M. A Melo,
H. Scatena Jr., F. M. M. Borges, A. G. Souza and
L. B. Zinner, J. Therm. Anal. Cal., 67 (2002) 397.
18 W. J. Geary, Coord. Chem. Rev., 7 (1971) 81.
The thermal decompositions and kinetic studies
show that trifluoromethanesulphonate anion is much
more stable than other anions taking into account the
remarkable resistance to thermal decomposition.
Received: July 11, 2007
Accepted: March 11, 2008
OnlineFirst: June 25, 2008
DOI: 10.1007/s10973-007-8633-3
962
J. Therm. Anal. Cal., 93, 2008