4
In the control experiments, we observed that the protected and
de-protected dipeptides of Trp-Pro (WP) and Pro-Trp (PW)
sequence were unable to show any kind of defined aggregates
(data not shown). These results demonstrated that the position of
tryptophan and proline in a truncated sequence playing a crucial
role in self-assembly process. Truncated PWWP and WPWWPW
sequence11, where two tryptophans are present in between
proline, results in instantaneous formation of vesicular structures
in fresh solution whereas; the presence of proline in between the
tryptophan (WPW) delayed the process of self-assembly in
solution.
assembled vesicles formation process, involving tryptophan
rich peptide model systems. Such spherical morphologies were
preserved when experiments were performed on the copper
surface (SEM), on highly oriented pyrolytic graphite surface
(HOPG) or under wet conditions (AFM), focused-ion-beam/high
resolution scanning electron microscope (FIB-HRSEM).
Acknowledgements
We thank Prof. Sandeep Verma, Department of Chemistry,
IIT Kanpur, for his constant support and suggestions. Financial
support from UGC and IIT-Kanpur is also gratefully
acknowledged.
Careful use of proline and aromatic amino acids systems will
not only help us to understand its role as a stabilizing feature in
aggregation, but also aid in de novo design of self-assembled
structures. Such kinds of nanomaterials have wide applications in
drug design/delivery for observation of the biological process at
nanoscale and further they can exhibit specific biomolecular or
supramolecular recognition properties using multifunctional
peptides.
References
1.
2.
Zasloff, M. Nature 2002, 415, 389-395; (b) Selsted, M.; Novotny, M.;
Morris, W.; Tang, Y. S.; Cullor, J. J. Biol.Chem. 1992, 267, 4292-4295.
(a) Ando, S.; Mitsuyasu, K.; Soeda, Y.; Hidaka, M.; Ito, Y.; Matsubara,
K.; Shindo, M.; Uchida, Y.; and Aoyagi, H. J. Pept. Sci. 2010, 16, 171-
177; (b) Podorieszach, A. P.; Huttunen-Hennelly, H. E. K. Org. Biomol.
Chem. 2010, 8, 1679-1687.
As a proof of concept, supramolecular recognition properties
of peptide 1 towards various metal ions were studied in
CH3OH/H2O (1:1 v/v, 50 mM HEPES buffer, pH 7.0). Tripeptide
1 in the UV-vis spectrum, displayed a typical absorption peak at
277 nm, due to the Trp indole moiety. In a preliminary
fluorescence assay, the fluorescence of 1 (10 µM) was screened
in the presence of 10 µM of various metal ions (alkali/alkaline
earth metal, transition metal and lanthanide metals) and of the
various metals studied, Tb3+ exhibited appreciable interaction
with the tripeptide. The original fluorescence intensity of 1
decreased to 60% on addition of Tb3+, 20% decrease on addition
of La(III) and Au(I) whereas only 5-10% decrease in
fluorescence was observed on addition of other metal ions viz.
Ca2+, Zn2+, Cd2+, Ag+, Li+, Sr2+, Pb2+, Mg2+, Eu3+, Cu2+, Co2+,
Mn2+, Hg2+, K+, Ni2+. So, the tripeptide 1 showed good chelation
towards the heavy transition metal ions20f. The fluorescence
emission changes can be rationalized by considering the fact that
Trpytophan indole engaged in metal ion binding instead of heavy
atom effect and thus complexation has significant effect on Trp
emission properties (Figure 8).
3.
4.
(a) Nan, Y. H.; Bang, J.-K., Shin, S. Y. Peptides 2009, 30, 832-838; (b)
Hsu, C.-H.; Chen, C.; Jou, M.-L.; Lee1, A. Y.-L.; Lin, Y.-C. Yu, Y.-P.;
Huang, W.-T.; Wu, S.-H. Nucleic Acids Research 2005, 33, 4053-4064.
Lee, D. G.; Kim, H. K.; Kim, S. A.; Park, Y.; Park, S. C.; Jang, S. H.;
Hahm, K. S. Biochem. Biophys. Res. Commun. 2003, 305, 305-310; (b)
Aley, S. B.; Zimmerman, M.; Hetsko, M.; Selsted, M. E. Infect. Immun.
1994, 62, 5397-5403.
Robinson Jr, W. E.; McDougall, B.; Tran, D., Selsted, M. E. J.
Leukocyte Biol. 1998, 63, 94-100. (b) Schluesener, H.; Radermacher, S.;
Melms, A.; Jung, S. J. Neuroimmunol. 1993, 47, 199-202.
Chan, D. I.; Prenner, E. J.; Vogel, H. J. Biochim. Biophys. Acta 2006,
1758, 1184-1202.
Khandelia, H.; Kaznessis, Y. N. J. Phys. Chem. B 2007, 111, 242-250.
(a) Ulijn, R. V.; Smith, A. M. Chem. Soc. Rev. 2008, 37, 664-675; (b)
Reches, M.; Gazit, E. Nanomater. Chem. 2007, 171-183.
(a) Lehn, J.-M. Chem. Soc. Rev. 2007, 36, 151-160; (b) Rapaport, H.
Supramol. Chem. 2006, 18, 445-454; (c) Reinhoudt, D. N.; Crego-
Calama, M. Science 2002, 295, 2403-2407.
5.
6.
7.
8.
9.
10. (a) Zhao, X.; Zhang, S. Macromol. Biosci. 2007, 7, 13-22; (b) Fairman,
R.; Aakerfeldt, K. S. Curr. Opin. Struct. Biol. 2005, 15, 453-463; (c)
Zhao, X.; Zhang, S. Trends Biotechnol. 2004, 22, 470-476; (d)
Rajagopal, K.; Schneider, J. P. Curr. Opin. Struct. Biol. 2004, 14, 480-
486
11. Ghosh, S.; Singh, S. K.; Verma, S. Chem. Commun. 2007, 2296-2298;
(b) Joshi, K. B.; Singh, P.; Verma, S. Biofabrication 2009, 1, 025002-
025006.
12. Joshi, K. B.; Verma, S. Angew. Chem. Int. Ed. 2008, 47, 2860-2863
13. Ghosh, S.; Verma, S. J. Phys. Chem. B 2007, 111, 3750-3757.
14. Ghosh, S.; Verma, S. Chem. Eur. J. 2008, 14, 1415-1419.
15. Langford, R. M. J. Nanosci. Nanotechnol. 2006, 6, 661-668; (b) Tseng,
A. A. Small 2005, 1, 924-939; (c) Gopal, V.; Radmilovic, V. R., Daraio,
C.; Jin, S.; Yang, P.; Stach, E. A. Nano Lett. 2004, 4, 2059-2063.
16. Moran, J. L.; Wheat, P. M.; Posner, J. D. Langmuir 2008, 24, 10532-
10536 and references cited therein.
17. Dejeu, J,; Membrey, F.; Diziain, S.; Bainier, C.; Spajer, M.; Charraut,
D.; Foissy, A. J. Phys. Chem. C 2008, 112, 10531-10537.
18. Lanyon, Y. H. ; de Marzi, G.; Watson, Y. E.; Quinn, A. J.; Gleeson, J.
P.; Redmond, G.; Arrigan, D. W. M. Anal.Chem. 2007, 79, 3048-3055.
19. (a) H. E. Auer, J. Am. Chem. Soc. 1973, 95, 3003-3011; (b) A. A.
Strömstedt, M. Pasupuleti, A. Schmidtchen, M. Malmsten, Biochim.
Biophys. Acta. 2009, 1788, 1916–1923.
20. (a) Gallivan, J. P.; Dougherty, D. A. Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 9459-9464; (b) Mcgaughey, G. B.; Gagne, M.; Rappe, A. K. J. Biol.
Chem. 1998, 273, 15458-15463; (e) Burley, S. K.; Petsko, G. A. Science
1985, 229, 23-28; (f) Ghosh, S.; Singh, P.; Verma, S. Tetrahedron 2008,
64, 1250-1256.
Figure 8. Fluorescence quenching of tripeptide 1 (10 µM) by various metal
ions (10 µM) in methanol/water (1:1) (1:1 v/v, 50 mM HEPES buffer, pH
7.0); λex =280 nm and λem =320 nm.
In conclusion, this study gives interesting insight into
contributions of proline and indole aromatic side chains of amino
acid residues in providing driving force and stability to self-