Inorganic Chemistry
Article
supported by the Australian Government. We thank Dr. Robin
Thomson for careful reading of the manuscript.
reactions between the cis-diamminediaquaplatinum(II) cation and the
oxygen-donor ligands hydroxide, perchlorate, nitrate, sulfate,
phosphate, and acetate. Inorg. Chem. 1984, 23, 3514−3521.
(21) Centerwall, C. R.; Goodisman, J.; Kerwood, D. J.; Dabrowiak, J.
REFERENCES
■
C. Cisplatin carbonato complexes. Implications for uptake, antitumor
(
1) Hudak, J. E.; Bertozzi, C. R. Glycotherapy: New advances inspire
a reemergence of glycans in medicine. Chem. Biol. 2014, 21, 16−37.
properties, and toxicity. J. Am. Chem. Soc. 2005, 127, 12768−12769.
(22) Di Pasqua, A. J.; Goodisman, J.; Kerwood, D. J.; Toms, B. B.;
(
2) Cummings, R. D.; Pierce, J. M. The challenge and promise of
glycomics. Chem. Biol. 2014, 21, 1−15.
3) Codd, R. Metalloglycomics: a new perspective upon competitive
metal-carbohydrate binding using EPR spectroscopy. Chem. Commun.
004, 2653−2655.
4) Farrell, N. P.; Gorle, A. K.; Peterson, E. J.; Berners-Price, S. J. In
Dubowy, R. L.; Dabrowiak, J. C. Activation of carboplatin by
carbonate. Chem. Res. Toxicol. 2006, 19, 139−149.
(
(23) Di Pasqua, A. J.; Centerwall, C. R.; Kerwood, D. J.; Dabrowiak,
J. C. Formation of carbonato and hydroxo complexes in the reaction
of platinum anticancer drugs with carbonate. Inorg. Chem. 2009, 48,
2
(
1
(
192−1197.
Metal Ions in Life Sciences; Sigel, A., Sigel, H., Freisinger, E., Sigel, R. K.
O., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2018; Vol. 18,
pp 109−140.
24) Di Pasqua, A. J.; Goodisman, J.; Kerwood, D. J.; Toms, B. B.;
Dubowy, R. L.; Dabrowiak, J. C. Role of carbonate in the cytotoxicity
of carboplatin. Chem. Res. Toxicol. 2007, 20, 896−904.
(5) Codd, R.; Irwin, J. A.; Lay, P. A. Sialoglycoprotein and
(25) Centerwall, C. R.; Kerwood, D. J.; Goodisman, J.; Toms, B. B.;
carbohydrate complexes in chromium toxicity. Curr. Opin. Chem. Biol.
003, 7, 213−219.
6) Codd, R.; Lay, P. A. Chromium(V)-sialic (neuraminic) acid
Dabrowiak, J. C. New extracellular resistance mechanism for cisplatin.
2
(
J. Inorg. Biochem. 2008, 102, 1044−1049.
(26) Mauldin, S. K.; Plescia, M.; Richard, F. A.; Wyrick, S. D.;
species are formed from mixtures of chromium(VI) and saliva. J. Am.
Voyksner, R. D.; Chaney, S. G. Displacement of the bidentate
malonate ligand from (d,l-trans-1,2-diaminocyclohexane)-
malonatoplatinum(II) by physiologically important compounds in
vitro. Biochem. Pharmacol. 1988, 37, 3321−3333.
Chem. Soc. 2001, 123, 11799−11800.
(7) Waller, L. N.; Fox, N.; Fox, K. F.; Fox, A.; Price, R. L.
Ruthenium red staining for ultrastructural visualization of a
glycoprotein layer surrounding the spore of Bacillus anthracis and
Bacillus subtilis. J. Microbiol. Methods 2004, 58, 23−30.
(27) Mauldin, S. K.; Gibbons, G.; Wyrick, S. D.; Chaney, S. G.
Intracellular biotransformation of platinum compounds with the 1,2-
diaminocyclohexane carrier ligand in the L1210 cell line. Cancer Res.
(8) Rozenberg, G. I.; Espada, J.; de Cidre, L. L.; Eijan, A. M.; Calvo,
́
J. C.; Bertolesi, G. E. Heparan sulfate, heparin, and heparinase activity
detection on polyacrylamide gel electrophoresis using the fluoro-
chrome tris(2,2’-bipyridine) ruthenium (II). Electrophoresis 2001, 22,
1
(
988, 48, 5136−5144.
28) Mauldin, S. K.; Husain, I.; Sancar, A.; Chaney, S. G. Effects of
the bidentate malonate ligand on the utilization and cytotoxicity of
platinum compounds in the L1210 cell line. Cancer Res. 1986, 46,
3
(
−11.
9) Cheng, T.-T.; Yao, J.-L.; Gao, X.; Sun, W.; Shi, S.; Yao, T.-M. A
2
(
876−2882.
new fluorescence ‘switch on’ assay for heparin detection by using a
functional ruthenium polypyridyl complex. Analyst 2013, 138, 3483−
29) Appleton, T. G.; Hall, J. R.; Ralph, S. F.; Thompson, C. S. M.
Reactions of platinum(II) aqua complexes. 2. Platinum-195 NMR
study of reactions between the tetraaquaplatinum(II) cation and
chloride, hydroxide, perchlorate, nitrate, sulfate, phosphate, and
acetate. Inorg. Chem. 1984, 23, 3521−3525.
3
(
489.
10) Szelke, H.; Harenberg, J.; Kramer, R. Detection and
̈
neutralisation of heparin by a fluorescent ruthenium compound.
Thromb. Haemostasis 2009, 102, 859−864.
(30) Ruhayel, R. A.; Corry, B.; Braun, C.; Thomas, D. S.; Berners-
(11) Vouras, M.; Schubert, M. The outer sphere association of
Price, S. J.; Farrell, N. P. Determination of the kinetic profile of a
chondroitin sulfate with polyvalent complex cations. J. Am. Chem. Soc.
957, 79, 792−795.
12) Farber, S. J.; Schubert, M. The binding of cations by
chondroitin sulfate. J. Clin. Invest. 1957, 36, 1715−1722.
13) Graham, H. D.; Williams, J. L. Quantitative aspects of the
dinuclear platinum anticancer complex in the presence of sulfate:
1
(
1
15
Introducing a new tool for the expedited analysis of 2D [ H, N]
HSQC NMR spectra. Inorg. Chem. 2010, 49, 10815−10819.
(31) Davies, M. S.; Thomas, D. S.; Hegmans, A.; Berners-Price, S. J.;
(
Farrell, N. Kinetic and equilibria studies of the aquation of the
interaction of carrageenan and other hydrocolloids with polyvalent
trinuclear platinum phase II anticancer agent [{trans-PtCl-
cobalt complexes. J. Food Sci. 1966, 31, 362−372.
4
+
(
NH ) } {μ-trans-Pt(NH ) (NH (CH ) NH ) }] (BBR3464).
(14) Mangrum, J. B.; Engelmann, B. J.; Peterson, E. J.; Ryan, J. J.;
3 2 2 3 2 2 2 6 2 2
Inorg. Chem. 2002, 41, 1101−1109.
Berners-Price, S. J.; Farrell, N. P. A new approach to glycan targeting:
enzyme inhibition by oligosaccharide metalloshielding. Chem.
Commun. 2014, 50, 4056−4058.
(32) Zhang, J.; Thomas, D. S.; Davies, M. S.; Berners-Price, S. J.;
Farrell, N. Effects of geometric isomerism in dinuclear platinum
antitumor complexes on aquation reactions in the presence of
perchlorate, acetate and phosphate. JBIC, J. Biol. Inorg. Chem. 2005,
10, 652−666.
(33) Cai, C.; Dickinson, D. M.; Li, L.; Masuko, S.; Suflita, M.;
Schultz, V.; Nelson, S. D.; Bhaskar, U.; Liu, J.; Linhardt, R. J.
Fluorous-assisted chemoenzymatic synthesis of heparan sulfate
oligosaccharides. Org. Lett. 2014, 16, 2240−2243.
(34) Hu, Y.-P.; Lin, S.-Y.; Huang, C.-Y.; Zulueta, M. M. L.; Liu, J.-Y.;
Chang, W.; Hung, S.-C. Synthesis of 3-O-sulfonated heparan sulfate
octasaccharides that inhibit the herpes simplex virus type 1 host−cell
interaction. Nat. Chem. 2011, 3, 557−563.
(35) Inoue, Y.; Nagasawa, K. An improved method for the
preparation of crystalline sodium salts of 2-deoxy-2-sulfoamino-d-
glucose and methyl 2-deoxy-2-sulfoamino-α-d-glucopyranoside. Car-
bohydr. Res. 1979, 69, 297−300.
(36) Appleton, T. G. Donor atom preferences in complexes of
platinum and palladium with amino acids and related molecules.
Coord. Chem. Rev. 1997, 166, 313−359.
(37) Hollis, L. S.; Lippard, S. J. Synthesis, structure, and platinum-
195 NMR studies of binuclear complexes of cis-diammineplatinum-
(15) Berners-Price, S. J.; Ronconi, L.; Sadler, P. J. Insights into the
mechanism of action of platinum anticancer drugs from multinuclear
NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 65−
9
(
8.
16) Peterson, E. J.; Daniel, A. G.; Katner, S. J.; Bohlmann, L.;
Chang, C.-W.; Bezos, A.; Parish, C. R.; von Itzstein, M.; Berners-Price,
S. J.; Farrell, N. P. Antiangiogenic platinum through glycan targeting.
Chem. Sci. 2017, 8, 241−252.
(17) Petitou, M.; van Boeckel, C. A. A. A synthetic antithrombin III
binding pentasaccharide is now a drug! What comes next? Angew.
Chem., Int. Ed. 2004, 43, 3118−3133.
(18) Chiodelli, P.; Bugatti, A.; Urbinati, C.; Rusnati, M. Heparin/
heparan sulfate proteoglycans glycomic interactome in angiogenesis:
Biological implications and therapeutical use. Molecules 2015, 20,
6
(
342−6388.
19) Weiss, R. J.; Esko, J. D.; Tor, Y. Targeting heparin and heparan
sulfate protein interactions. Org. Biomol. Chem. 2017, 15, 5656−5668.
20) Appleton, T. G.; Berry, R. D.; Davis, C. A.; Hall, J. R.; Kimlin,
H. A. Reactions of platinum(II) aqua complexes. 1. Multinuclear
platinum-195, nitrogen-15, and phosphorus-31) NMR study of
(
(
I
Inorg. Chem. XXXX, XXX, XXX−XXX