added to the solution of activated DNAzyme-1 causing
particle shell recognition and cleavage. Product strands were
again separated by filtration from particles and analyzed by
fluorescence. The observed pM sensitivities (Fig. 3a) for the
detection and signal amplification of ssDNA confirm the
turnover of substrate on the particle by DNAzyme-1.
15 B. Ren, J.-M. Zhou and M. Komiyama, Nucleic Acids Res., 2004,
3
2, e42.
1
1
6 K. Nakatani, ChemBioChem, 2004, 5, 1623–1633.
7 J. M. Gibbs, S.-J. Park, D. R. Anderson, K. J. Watson,
C. A. Mirkin and S. T. Nguyen, J. Am. Chem. Soc., 2005, 127,
1170–1178.
1
8 V. Pavlov, B. Shlyahovsky and I. Willner, J. Am. Chem. Soc., 2005,
1
27, 6522–6523.
9 P. Simon, C. Dueymes, M. Fontecave and J.-L. Decout, Angew.
Chem., Int. Ed., 2005, 44, 2764–2767.
In addition, this process is sequence selective, as evidenced
by the selective inhibition and triggering of DNAzyme-1 and
the observation that the non-complementary DNAzyme-2 has
no effect on P-1 (Fig. 3b). In turn, DNAzyme-2 catalyzes shell
degradation when mixed with particles containing the
complementary sequence, DNA-2 (P-2). The above studies
illustrate two key features of this system: (1) particles are
sensitive to low concentrations of catalytically active
DNAzyme. (2) The particles are susceptible to degradation
in a sequence selective and concentration dependent fashion.
In conclusion, the present study has introduced a novel
approach to substrate design enabling a DNAzyme to be
utilized in a truly catalysis-based amplification and detection
assay. This affords a route toward DNAzyme detection assays
of various types where the myriad ways of recognizing ssDNA
1
2
2
0 R. R. Breaker and G. F. Joyce, Chem. Biol., 1994, 1, 223–229.
1 S. W. Santoro and G. F. Joyce, Proc. Natl. Acad. Sci. U. S. A.,
1
997, 94, 4262–4266.
2
2
2
2 J. Li, W. Zheng, A. H. Kwon and Y. Lu, Nucleic Acids Res., 2000,
28, 481–488.
3 M. N. Stojanovic and D. Stefanovic, Nat. Biotechnol., 2003, 21,
1
069–1074.
4 M. N. Stojanovic, P. de Prada and D. W. Landry, Nucleic Acids
Res., 2000, 28, 2915–2918.
25 A. V. Todd, C. J. Fuery, H. L. Impey, T. L. Applegate and
M. A. Haughton, Clin. Chem. (Washington, DC), 2000, 46,
25–630.
6
2
6 M. N. Stojanovic, P. d. Prada and D. W. Landry, ChemBioChem,
2001, 2, 411–415.
27 S. Schubert and J. Kurreck, Curr. Drug Targets, 2004, 5, 667–681.
28 Y. Tian and C. Mao, Talanta, 2005, 67, 532–537.
29 Y. Tian, Y. He and C. Mao, ChemBioChem, 2006, 7,
1862–1864.
4
4
sequences may be used as triggers.
NCG thanks the Camille & Henry Dreyfus Foundation for
support through a New Faculty Award and we acknowledge
NSF for support through CHE-0741968.
30 J. Liu and Y. Lu, Angew. Chem., Int. Ed., 2007, 46,
587–7590.
1 D. P. Wernette, C. Mead, P. W. Bohn and Y. Lu, Langmuir, 2007,
3, 9513–9521.
2 A. K. Brown, J. Liu, Y. He and Y. Lu, ChemBioChem, 2009, 10,
86–492.
3 M. P. Chien, A. M. Rush, M. P. Thompson and N. C. Gianneschi,
Angew. Chem., Int. Ed., 2010, 49, 5076–5080.
34 S. Tyagi and F. R. Kramer, Nat. Biotechnol., 1996, 14,
303–308.
7
3
3
3
2
4
Notes and references
1
2
3
B. Schweitzer and S. Kingsmore, Curr. Opin. Biotechnol., 2001, 12,
1–27.
B. W. Kirk, M. Feinsod, R. Favis, R. M. Kliman and F. Barany,
Nucleic Acids Res., 2002, 30, 3295–3311.
L. Zhu and E. V. Anslyn, Angew. Chem., Int. Ed., 2006, 45,
2
35 M. Singh-Zocchi, S. Dixit, V. Ivanov and G. Zocchi, Proc. Natl.
Acad. Sci. U. S. A., 2003, 100, 7605–7610.
1
190–1196.
36 K. Wang, Z. Tang, C. J. Yang, Y. Kim, X. Fang, W. Li, Y. Wu,
C. D. Medley, Z. Cao, J. Li, P. Colon, H. Lin and W. Tan, Angew.
Chem., Int. Ed., 2009, 48, 856–870.
37 J.-L. He, Z.-S. Wu, H. Zhou, H.-Q. Wang, J.-H. Jiang, G.-L. Shen
and R.-Q. Yu, Anal. Chem., 2010, 82, 1358–1364.
38 V. S. Trubetskoy, J. E. Hagstrom and V. G. Budker, Anal.
Biochem., 2002, 300, 22–26.
4
5
6
A. J. H. Smith, Nucleic Acids Res., 1979, 6, 831–848.
L. H. Guo and R. Wu, Nucleic Acids Res., 1982, 10, 2065–2084.
R. K. Saiki, S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn,
H. A. Erlich and N. Arnheim, Science, 1985, 230, 1350–1354.
P. Duck, G. Alvarado-Urbina, B. Burdick and B. Collier,
BioTechniques, 1990, 9, 142–148.
7
8
9
K. Okano and H. Kambara, Anal. Biochem., 1995, 228, 101–108.
F. Bekkaoui, I. Poisson, W. Crosby, L. Cloney and P. Duck,
BioTechniques, 1996, 20, 240–248.
39 H. S. Bisht, D. S. Manickam, Y. You and D. Oupicky, Biomacro-
molecules, 2006, 7, 1169–1178.
40 M. L. Collins, B. Irvine, D. Tyner, E. Fine, C. Zayati, C.-a. Chang,
T. Horn, D. Ahle, J. Detmer, L.-P. Shen, J. Kolberg, S. Bushnell,
M. S. Urdea and D. D. Ho, Nucleic Acids Res., 1997, 25,
2979–2984.
1
1
0 C. A. Mein, B. J. Barratt, M. G. Dunn, T. Siegmund, A. N. Smith,
L. Esposito, S. Nutland, H. E. Stevens, A. J. Wilson, M. S. Phillips,
N. Jarvis, S. Law, M. De Arruda and J. A. Todd, Genome Res.,
2
000, 10, 330–343.
41 M. S. Shchepinov, I. A. Udalova, A. J. Bridgman and
E. M. Southern, Nucleic Acids Res., 1997, 25, 4447–4454.
42 M. S. Shchepinov, K. U. Mir, J. K. Elder, M. D. Frank-
Kamenetskii and E. M. Southern, Nucleic Acids Res., 1999, 27,
3035–3041.
1 T. M. Hsu, S. M. Law, S. Duan, B. P. Neri and P.-Y. Kwok, Clin.
Chem., 2001, 47, 1373–1377.
2 Z. Wang and J. Moult, Hum. Mutat., 2001, 17, 263–270.
3 M. Levy and A. D. Ellington, Proc. Natl. Acad. Sci. U. S. A., 2003,
1
1
1
00, 6416–6421.
43 A. K. R. Lytton-Jean and C. A. Mirkin, J. Am. Chem. Soc., 2005,
127, 12754–12755.
44 S. K. Silverman, Chem. Commun., 2008, 3476–3485.
1
4 A. Saghatelian, K. M. Guckian, D. A. Thayer and M. R. Ghadiri,
J. Am. Chem. Soc., 2003, 125, 344–345.
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 167–169 169