JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY DOI 10.1002/POLA
5 Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem Rev 2009, 109,
PCBA units successfully inhibited the large-scale aggregation
of diffused PCBM molecules over time, thereby enhancing
the morphological stabilization relative to that of the system
lacking hydrogen bonding interactions.
5868–5923.
6 Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem Rev 2007,
¨
107, 1324–1338.
To study of the morphological issues on the nanoscale, we
monitored the topographies of the blend films using tapping-
mode AFM. Figure 6 reveals that the P1/PCBM/PCBA and
P1/PCBM films gave root-mean-square roughnesses of 0.65
and 1.07 nm after annealing for 10 min, respectively. How-
ever, after annealing for 5 h, the P1/PCBM/PCBA blend had
a more uniform surface than that of the P1/PCBM blend,
with root-mean-square roughnesses of 1.06 and 4.80 nm,
respectively. Thus, it appears that the presence of an appro-
priate quantity of PCBA in the polymer blend prevented the
PCBM units from undergoing severe aggregation during
long-term annealing, possibly because the PCBM units were
well dispersed through attraction to the PCBA units in each
active site for hydrogen bonding. In summary, decreased sur-
face roughness when hydrogen bonding was present, on
both the micrometer and nanoscale scales, improved the
photovoltaic performance of the PSC devices.
7 Hoppe, H.; Sariciftci, N. S. J Mater Chem 2006, 16, 45–61.
8 Thompson, B. C.; Fre´chet, J. M. J. Angew Chem Int Ed 2008,
47, 58–77.
9 Chang, Y.-T.; Hsu, S.-L.; Su, M.-H.; Wei, K.-H. Adv Funct
Mater 2007, 17, 3326–3331.
10 Chang, Y.-T.; Hsu, S.-L.; Chen, G.-Y.; Su, M.-H.; Singh, T. A.;
Diau, E. W.-G.; Wei, K.-H. Adv Funct Mater 2008, 18, 2356–
2365.
11 Chang, Y.-T.; Hsu, S.-L.; Su, M.-H.; Wei, K.-H. Adv Mater
2009, 21, 2093–2097.
12 Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Em-
ery, K.; Yang, Y. Nat Mater 2005, 4, 864–868.
13 Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K. H.; Heeger, A. J.
Adv Funct Mater 2005, 15, 1617–1622.
14 Yip, H.-L.; Hau, S. K.; Baek, N. S.; Ma, H.; Jen, A. K.-Y. Adv
Mater 2008, 20, 2376–2382.
CONCLUSIONS
15 Hau, S. K.; Yip, H.-L.; Ma, H.; Jen, A. K.-Y. Appl Phys Lett
We have synthesized two polymers, P1 and P2, through
Suzuki couplings of 2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxa-
borolane-2-yl)-N-90-heptadecanylcarbazole with 4,7-(20-dibro-
mothien-5-yl)-2,1,3-benzothiadiazole and 2,5-dibromo-3-[2-
(4-pyridyl)vinyl]thiophene. Both polymers exhibited rela-
tively high glass transition temperatures (129 and 148 ꢀC,
respectively). Although the photovoltaic properties decreased
when we increased the content of side chain-tethered pyri-
dine units from 10% to 25% (possibly because P2 had a
lower molecular weight and poorer PDI than did P1), the
thermal stability improved after incorporating PCBA into P1,
thereby forming hydrogen bonds in the polymer blend; the
PCE of the PSC device based on P1/PCBM/PCBA remained
2008, 93, 233304-1–233304-3.
16 Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.;
Neagu-Plesu, R.; Belleteˆte, M.; Durocher, G.; Tao, Y.; Leclerc,
M. J Am Chem Soc 2008, 130, 732–742.
17 Wakim, S.; Beaupre´, S.; Blouin, N.; Aich, B.-R.; Rodman, S.;
Gaudiana, R.; Tao, Y.; Leclerc, M. J Mater Chem 2009, 19,
5351–5358.
18 Chu, T. Y.; Alem, S.; Verly, P. G.; Wakim, S.; Lu, J.; Tao, Y.;
Beaupre´, S.; Leclerc, M.; Be´langer, F.; De´silets, D.; Rodman, S.;
Waller, D.; Gaudiana, R. Appl Phys Lett 2009, 95,
063304-1–063304-3.
19 Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G.
W.; Yang Y.; Yu, L. P.; Wu, Y.; Li, G. Nat Photonics 2009, 3,
649–653.
ꢀ
at 75% of its original value after annealing for 5 h at 140 C,
but that based on P1/PCBM plunged to less than 55% of the
original value under the same conditions. The morphological
deterioration of the BHJ film of the P1/PCBM/PCBA blend
was also suppressed, as observed through optical and AFM
imaging.
20 Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin,
P. G.; Kim, Y. K.; Anthopoulos, T. D.; Stavrinou, P. N.; Bradley,
D. D. C.; Nelson J. Nat Mater 2008, 7, 158–164.
21 Al-Ibrahim, M.; Ambacher, O.; Sensfuss, S.; Gobsch, G.
The authors thank the National Science Council for financial
support.
Appl Phys Lett 2005, 86, 201120-1–201120-3.
22 Chirvase, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V.
Nanotechnology 2004, 15, 1317–1323.
REFERENCES AND NOTES
23 Zhao, Y.; Xie, Z.; Qu, Y.; Geng, Y.; Wang, L. Appl Phys Lett
2007, 90, 043504-1–043504-3.
1 Winder, C.; Sariciftci, N. S.
J Mater Chem 2004, 14,
24 Vanlaeke, P.; Vanhoyland, G.; Aernouts, T.; Cheyns, D.; Dei-
bel, C.; Manca, J.; Heremans, P.; Poortmans, J. Thin Solid
Films 2006, 511–512, 358–361.
1077–1086.
2 Bundgaard, E.; Krebs, F. C. Sol Energy Mater Sol Cells 2007,
91, 954–985.
25 Mihailetchi, V. D.; Xie, H.; de Boer, B.; Popescu, L. M.; Hum-
melen, J. C.; Blom, P. W. M.; Koster, L. J. A. Appl Phys Lett
2006, 89, 012107-1–012107-3.
3 Mayer, A. C.; Scully, S. R.; Hardin, B. E.; Rowell, M. W.;
McGehee, M. D. Mater Today 2007, 10, 28–33.
4 Thompson, B. C.; Fre´chet, J. M. J. Angew Chem Int Ed 2008,
26 Peet, J.; Senatore, M. L.; Heeger, A. J.; Bazan, G. C. Adv
47, 58–77.
Mater 2009, 21, 1521–1527.
610
WILEYONLINELIBRARY.COM/JOURNAL/JPOLA