4
166
S. Cai et al. / Tetrahedron Letters 52 (2011) 4164–4167
O
O
I
I
CO Me
2
I
CO Me
OMe
NMe
2
CO Me
2
I2
O
−H
O
-I
N
OH
OH
B
OH
N
O
2
H
1
a
A
C
O
O
I
I
O
O
OMe
O
O
I
CO Me
2
CO
2
Me
−
I
2
O
NMe2
NMe2
−HNMe
2
D
E
3a
H
Scheme 4. Possible mechanism for the formation of flavone.
References and notes
O
O
O
I
1.
(a) Harborne, J. B.; Baxter, H. In The Handbook of Natural Flavonoids; John Wiley
Son: Chichester, UK, 1999; Vols. 1 and 2,; (b) Harborne, J B. The Flavonoids:
OEt
I
&
Advances in Research since 1986; Chapman and Hall: London, UK, 1994.
(a) Lewis, K.; Stermitz, F. R.; Collins, F. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 1433;
O
6
O
OH
2.
5
(
b) Costantino, L.; Rastelli, G.; Gamberini, M. C.; Vinson, J. A.; Bose, P.; Iannone,
A.; Staffieri, M.; Antolini, L.; Corso, A. D.; Mura, U.; Albasini, A. J. Med. Chem.
999, 42, 1881; (c) Huang, Y. T.; Blagg, B. S. J. J. Org. Chem. 2007, 72, 3609.
1
CO Et
2
3. (a) Farinola, N.; Piller, N. Lymphat. Res. Biol. 2005, 3, 81; (b) Casley-Smith, J. R.;
Morgan, R. G.; Piller, N. B. New Engl. J. Med. 1993, 329, 1158.
4
5
.
.
Cermak, R. Expert Opin. Drug Met. 2008, 4, 17.
Saha, N. N.; Desai, V. N.; Dhavale, D. D. J. Org. Chem. 1999, 64, 1715.
OH
6. Woodruff, E. H. Org. Synth. 1944, 24, 69.
7
.
(a) Crosby, D. G.; Berthold, R. V. J. Org. Chem. 1962, 27, 3083; (b) Harvey, R. G.;
Cortez, C.; Ananthanarayan, T. P.; Schmolka, S. J. Org. Chem. 1988, 53, 3936; (c)
Yonezawa, N.; Nonoyama, S.; Saigo, K.; Hasegawa, M. J. Org. Chem. 1985, 50,
7
8
3026.
8
.
.
(a) Allan, J.; Robinson, R. J. Chem. Soc. 1924, 125, 2192; (b) Dyke, S. F.; Ollis, W.
D.; Sainsbury, M. J. Org. Chem. 1961, 26, 2453; (c) Wheller, T. S. Org. Synth. 1952,
Based on these results, we postulated a possible mechanism for
3
2, 72.
this transformation (Scheme 4). Activated by iodine, the triple
bond became electron-deficient as described in the previous re-
9
(a) Auwers, K. V. Ber. 1908, 41, 4233; (b) Auwers, K. V. Ber. 1915, 48, 85; (c)
Auwers, K. V. Ber. 1916, 49, 809.
2
3
port. Both oxygen and nitrogen in DMF are electron-rich due to
its resonance nature. By nucleophilic attack from oxygen of DMF
on the iodonium intermediate (A), iminium intermediate (B) was
afforded, which could be intramolecularly attacked by the ortho
hydroxy group. Via electron push-pull effect, the fused ring (C)
was opened and a new iminium intermediate (D) was formed
which further cyclized to E. Subsequent exclusion of iodine and
dimethylamine led to the formation of flavone skeleton (3a)
successfully.
10. Gormley, T. R.; O’Sullivan, W. I. Tetrahedron 1973, 29, 369.
1
1. (a) Awuah, E.; Capretta, A. Org. Lett. 2009, 11, 3210; (b) Ma, W.; Li, X.; Yang, J.;
Liu, Z.; Chen, B.; Pan, X. Synthesis 2006, 2489; (c) Liang, B.; Huang, M.; You, Z.;
Xiong, Z.; Lu, K.; Fathi, R.; Chen, J.; Yang, Z. J. Org. Chem. 2005, 70, 6097; (d)
Miao, H.; Yang, Z. Org. Lett. 2000, 2, 1765.
12. Yang, Q.; Alper, H. J. Org. Chem. 2010, 75, 948.
13. (a) Yamamoto, Y.; Gridnev, I. D.; Patil, N. T.; Jin, T. Chem. Commun. 2009, 5075;
b) Harkat, H.; Blanc, A.; Weibel, J. M.; Pale, P. J. Org. Chem. 2008, 73, 1620.
(
1
4. Typical procedure for the synthesis of 2a: Iodine (2 mmol) was added to the
solution of methyl 3-(2-hydroxyphenyl)propiolate 1a (1 mmol) in fresh-
distilled toluene (10 mL). The mixture was stirred at 90 °C for 12 h. The
resulting reaction solution was quenched with saturated Na
20 mL) and extracted with 3 Â 10 mL of ethyl acetate. The extract was dried
over anhydrous Na SO and evaporated in vacuo. The residue was purified by
silica gel column chromatography with hexane–EtOAc. Compound 2a: yellow
2 2 3
S O solution
In this Letter, we reported the selective reaction between 3-
2-hydroxyphenyl)propiolate and iodine in toluene and DMF,
(
(
2
4
respectively. The reaction of 3-(2-hydroxyphenyl)propiolate and
iodine in toluene afforded coumarins, while the reaction of 3-(2-
hydroxyphenyl)propiolate and iodine in dimethylforamide gave
flavones. Assisted by iodine, DMF participated in the reaction,
implying that the combination of DMF and iodine might be an effi-
cient formylating reagent in both laboratory and industry.
1
solid, mp 187–190 °C; H NMR (400 MHz, CDCl
7
3
) d 7.62–7.52 (m, 2H), 7.39–
) d 158.2, 151.4, 133.0, 132.5,
127.5, 125.1, 120.7, 120.1, 117.0 ppm; HRMS (ESI) calcd for
13
.32 (m, 2H) ppm; C NMR (100 MHz, CDCl
3
9 4 2 2
C H O I
+
(
[M+Na] ), 420.8205; found, 420.8193.
1
5. (a) Vilsmeier, A.; Haack, A. Ber. 1927, 60, 119; (b) Meth-Cohn, O.; Stanforth, S. P.
Compd. Org. Synth. 1991, 2, 777; (c) Campaigne, E.; Archer, W. L. Org. Synth. Coll.
1963, 4, 331; (d) Campaigne, E.; Archer, W. L. Org. Synth. Coll. 1953, 33, 27.
6. Femández, I.; Begoña, B.; Muñoz, S.; Pedro, J. R.; de la Salud, R. Synlett 1993,
1
4
89.
Acknowledgment
17. Caputo, R.; Ferriri, C.; Palumbo, G. Synth. Commun. 1987, 17, 1629.
8. Stevens, T. E. Chem. Ind. 1958, 1090.
1
1
9. Typical procedure for the synthesis of 3a: Iodine (1.5 mmol) was added to the
solution of methyl 3-(2-hydroxyphenyl)propiolate 1a (1 mmol) in DMF
(10 mL). The mixture was stirred at 110 °C for 72 h. The resulting reaction
We thank the National Natural Science Foundation of China
Nos. 21032005, 20872128) for the financial support of this
research.
(
solution was quenched with saturated Na
2
S
2
O
3
solution (25 mL) and extracted
SO
4
with 3 Â 10 mL of ethyl acetate. The extract was dried over anhydrous Na
2
and evaporated in vacuo. The residue was purified by silica gel column
1
Supplementary data
chromatography with hexane–EtOAc. 3a: White solid, mp 79–82 °C, H NMR
(
7
400 MHz, CDCl
3
) d 8.70 (s, 1H), 8.30 (d, J = 7.9 Hz, 1H), 7.72 (t, J = 7.7 Hz, 1H),
13
.49 (dd, J = 16.4, 8.1 Hz, 2H), 3.94 (s, 3H) ppm; C NMR (101 MHz, CDCl
3
)
1
73.4, 164.1, 162.1, 155.6, 134.2, 126.6, 126.3, 125.14, 118.1, 116.1, 52.4 ppm.
+
HRMS (ESI) calcd for C11H O ([M+Na] ), 227.0315; found, 227.0312.
8
4