Organic Letters
Letter
coupled with iodobenzene to afford the products 3a, 3p−s in
good yields (75−93%).
coordination of the acetohydrazone moiety in Int-1 to the
Pd(OAc)2 species occurs to form the chelated cyclometalated
Pd-complex Int-2, followed by formation of Int-3. Then,
oxidation−addition of Int-3 and aryl iodide takes place to form
Int-4, which undergoes reductive elimination to obtain Int-5.
Subsequently, Int-5 is decomposed to Int-6 along with the Pd0
species. Int-6 is hydrolyzed to the desired product 3 and
acetohydrazide. The catalytic cycle is completed by the
AgOAc/AcOH-promoted reoxidation of Pd0 into the starting
Pd(OAc)2 species.
Scheme 2. C(sp3)−H Arylation of 1-Iodo-4-methoxybenzene
ab
,
(2a) with Aldehyde (1)
In conclusion, we have demonstrated a straightforward and
efficient procedure for the synthesis of 2-benzylbenzaldehyde
derivatives from 2-methylbenzaldehyde and iodobenzene via a
C(sp3)−H activation process. In the course of the activation
reaction, acetohydrazone serves as a transient directing group
which has several main advantages: (i) the directing group need
not be introduced to substrate in advance; (ii) bidentate
coordination of the acetohydrazone moiety is an efficient
directing group; (iii) the directing group is easy to remove from
the intermediate to obtain the desired product.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and spectral data for all
a
Standard conditions: 1 (1.2 mmol), 2a (1.0 mmol), Pd(OAc)2 (10
mol %), acetohydrazide (20 mol %), AgOAc (2.0 mmol, 2 equiv),
AcOH−H2O (10 mL, v/v, 1:1), 110 °C, 24 h. Isolated yields.
b
AUTHOR INFORMATION
Corresponding Authors
■
Notes
On the basis of the experimental results, a possible
mechanism for the C(sp3)−H activation arylation reaction is
presented in Scheme 3. Initially, aldehyde reacts with
acetohydrazide to form acetohydrazone (Int-1), which serves
as a directing group in the next step. Then, bidentate
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Scheme 3. Proposed Mechanism
This work was supported by the National Natural Science
Foundation of China (Grants 81273397 and 81561148011),
the Chinese National Science & Technology Major Project
“Key New Drug Creation and Manufacturing Program” (Grant
2013ZX09508104).
REFERENCES
■
(1) (a) Yu, X.; Lu, X. Adv. Synth. Catal. 2011, 353, 569.
(b) Kuninobu, Y.; Tatsuzaki, T.; Matsuki, T.; Takai, K. J. Org. Chem.
2011, 76, 7005. (c) Hussain, A.; Parrick, J. Tetrahedron Lett. 1983, 24,
609. (d) Rafiq, S. M.; Sivasakthikumaran, R.; Karunakaran, J.;
Mohanakrishnan, A. K. Eur. J. Org. Chem. 2015, 2015, 5099.
(2) Bhattacharya, A.; Miller, B. J. Am. Chem. Soc. 1980, 102, 2450.
(3) (a) Charlton, J. L.; Plourde, G. L.; Koh, K.; Secco, A. S. Can. J.
Chem. 1990, 68, 2022. (b) Durst, T.; Kozma, E. C.; Charlton, J. L. J.
Org. Chem. 1985, 50, 4829.
(4) (a) Runyon, S. P.; Peddi, S.; Savage, J. E.; Roth, B. L.; Glennon,
R. A.; Westkaemper, R. B. J. Med. Chem. 2002, 45, 1656. (b) Patel, B.
A.; Ashby, C. R., Jr.; Hardej, D.; Talele, T. T. Bioorg. Med. Chem. Lett.
2013, 23, 5523. (c) Runyon, S. P.; Mosier, P. D.; Roth, B. L.; Glennon,
R. A.; Westkaemper, R. B. J. Med. Chem. 2008, 51, 6808. (d) Hagishita,
S.; Yamada, M.; Shirahase, K.; Okada, T.; Murakami, Y.; Ito, Y.;
Matsuura, T.; Wada, M.; Kato, T.; Ueno, M.; Chikazawa, Y.; Yamada,
K.; Ono, T.; Teshirogi, I.; Ohtani, M. J. Med. Chem. 1996, 39, 3636.
(e) Gribble, A. D.; Dolle, R. E.; Shaw, A.; McNair, D.; Novelli, R.;
C
Org. Lett. XXXX, XXX, XXX−XXX