A R T I C L E S
Monnier et al.
source has actually led to the discovery of a new catalytic
to develop their ruthenium-catalyzed formation and to explore
the generality of the reaction.
13
bicyclization of enynes, forming alkenylbicyclo[3.1.0]hexanes
eq 1). This reaction, which tolerates functional groups, has been
(
We report here that the catalytic transformation of 1,6-enynes
and diazoalkanes into alkenylbicyclo[3.1.0]hexane derivatives,
with RuCl(COD)Cp* as catalyst precursor, constitutes a general
reaction, including CdC bond substituted enynes, and shows
high stereoselectivity. By contrast, triple-bond disubstituted
enynes offer competitive reactions with a simple cyclopropa-
nation of the enyne CdC bond or a new monocyclization
reaction leading to alkenyl-alkylidene cyclopentane derivatives.
Actually, we show that the RuCl(dCHY)Cp* catalytic inter-
mediate behaves as an enyne metathesis catalyst inhibitor but
favors cyclopropanation. Density functional theory (DFT)
calculations on a RuCl(HCtCH)(CH2CH2)C5H5 model show
that the formation of an alkenylruthenacyclobutane intermediate
used for the controlled synthesis of bicyclic amino acid
derivatives,14 whereas a similar reaction in the additional
presence of ethylene was successfully orientated toward the
1
5
formation of a cycloalkenylcyclopropane derivative. It was
shown recently that this reaction of a functional enyne with
diazoalkanes, but with the Ni(COD)2 catalyst (COD ) 1,5-cyclo-
16
octadiene), also led to alkenylbicyclo[3.1.0]hexane derivatives.
5
3
Alkenylbicyclo[3.1.0]hexane intermediates have recently been
shown to be powerful for building cyclopentenes with NHC-
Ni(0) catalyst,17 and especially larger cycles via catalyzed
is favored by an η -to-η shift of the cyclopentadienyl ring and
that the large stabilization of the metallacyclobutane intermediate
is due to coordination of the alkenyl bond, leading to an alkyl-
allyl ligand, which favors reductive elimination rather than
metathesis.
[
4+2+1] cycloadditions with Ni(COD)2 and [5+2] cycloaddi-
7
tions with rhodium(I) catalyst.
As the vinylcyclopropane syntheses are not straightforward,18
the interest in alkenylcyclopropanes and bicyclic[3.1.0]hexane
derivatives for controlled building of larger cycles has led us
Results and Discussion
The reaction of the diazoalkane N2CHSiMe3 with alkynes in
the presence of RuCl(COD)Cp* (I) as catalyst precursor leads
to the double addition of a related carbene to the triple bond to
selectively generate silylated 1,3-dienes (eq 2). This reaction
reveals the potential biscarbene character of a triple bond for
coupling with external carbene. It also suggests the intermediate
formation of RuCl(dCHSiMe3)Cp* from RuCl(COD)Cp* and
N2CHSiMe3.
(
7) For cycloaddition involving vinylcyclopropane precursors, see: (a) Wender,
P. A.; Haustedt, L. O.; Lim, J.; Love, J. A.; Williams, T. J.; Yoon, J-Y. J.
Am. Chem. Soc. 2006, 128, 6302. (b) Wegner, H. A.; De Meijere, A.;
Wender, P. A. J. Am. Chem. Soc. 2005, 127, 6530. (c) Wender, P. A.;
Gamber, G. G.; Hubbard, R. D.; Pham, S. M.; Zhang, L. J. Am. Chem.
Soc. 2005, 127, 2836. (d) Yu, Z.-X.; Wender, P. A.; Houk, K. N. J. Am.
Chem. Soc. 2004, 126, 9154. (e) Wender, P. A.; Barzilay, C. M.; Dyckman,
A. J. J. Am. Chem. Soc. 2001, 123, 179. (f) Wender, P. A.; Dyckman, A.
J.; Husfeld, C. O.; Scanio, M. J. C. Org. Lett. 2000, 2, 1609. (g) Wender,
P. A.; Dyckman, A. J. Org. Lett. 1999, 1, 2089. (h) Wender, P. A.;
Dyckman, A. J.; Husfeld, C. O.; Kadereit, D.; Love, J. A.; Rieck, H. J.
Am. Chem. Soc. 1999, 121, 10442. (i) Trost, B. M.; Shen, H. C.; Schulz,
T.; Koradin, C.; Schirok, H. Org. Lett. 2003, 5, 4149. (j) Trost, B. M.;
Shen, H. C.; Horne, D. B.; Toste, F. D.; Steinmetz, B. G.; Koradin, C.
Chem. Eur. J. 2005, 11, 2577.
1
9
(8) (a) Chatani, N.; Kataoka, K.; Murai, S. J. Am. Chem. Soc. 1998, 120, 9104.
(
b) Peppers, B. P.; Diver, S. T. J. Am. Chem. Soc. 2004, 126, 9524. (c)
As the neutral 16-electron ruthenium(II)-carbene intermedi-
ate RuCl(dCHY)Cp* is isoelectronic with the Grubbs catalysts
RuCl2(dCHR)(PCy3)L (L ) PCy3 or imidazolinylidene, IMes),
one might expect that the intermediate RuCl(dCHY)Cp* would
catalyze the enyne metathesis to give the corresponding alk-
Tanaka, D.; Sato, Y.; Mori, M. Organometallics 2006, 25, 799.
(9) (a) F u¨ rstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863.
(
b) Mamane, V.; Gress, T.; Krause, H.; F u¨ rstner, A. J. Am. Chem. Soc.
2
004, 126, 8654. (c) F u¨ rstner, A.; Davies, P. W.; Gress, T. J. Am. Chem.
Soc. 2005, 127, 8244.
(
10) (a) Nieto-Oberhuber, C.; Munoz, M. P.; Lopez, S.; Jim e´ nez-Nunez, E.;
Nevado, C.; Herrero-Gomez, E.; Raducan, M.; Echavarren, A. M. Chem.
Eur. J. 2006, 12, 1677. (b) Nieto-Oberhuber, C.; Lopez, S.; Echavarren,
A. M. J. Am. Chem. Soc. 2005, 127, 6178. (c) Nieto-Oberhuber, C.; Munoz,
M. P.; Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew.
Chem., Int. Ed. 2004, 43, 2402. (d) Nieto-Oberhuber, C.; Lopez, S.; Munoz,
M. P.; Cardena, D. J.; Bunuel, E.; Nevado, C.; Echavarren, A. M. Angew.
Chem., Int. Ed. 2005, 44, 6146. (e) Marion, N.; De Fr e´ mont, P.; Lemi e` re,
G.; Stevens, E. D.; Fensterbank, L.; Malacria, M.; Nolan, S. P. Chem.
Commun. 2006, 2048. (f) Lopez, S.; Herrero-Gomez, E.; P e´ rez-Galan, P.;
Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45,
3
enylcycloalkene. Thus, the enyne 1a would lead to the 1,3-
diene 2a (path (a), eq 3).
6
2
1
2
029. (g) Luzung, M. R.; Matkham, J. P.; Toste, F. D. J. Am. Chem. Soc.
004, 126, 10858. (h) Wang, S.; Zhang, L. J. Am. Chem. Soc. 2006, 128,
4274. (i) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45,
00.
(
11) (a) Chatani, N.; Inoue, H.; Kotsuma, T.; Murai, S. J. Am. Chem. Soc. 2002,
1
24, 10294. (b) Kim, S. M.; Lee, S. I.; Chung, Y. K. Org. Lett. 2006, 8,
425.
5
(
12) (a) Peppers, B. P.; Diver, S. T. J. Am. Chem. Soc. 2004, 126, 9524. (b)
Galan, B. R.; Giessert, A. J.; Keister, J. B.; Diver, S. T. J. Am. Chem. Soc.
2
005, 127, 5762.
(
13) Monnier, F.; Castillo, D.; D e´ rien, S.; Toupet, L.; Dixneuf, P. H. Angew.
Chem., Int. Ed. 2003, 42, 5474.
(
14) Eckert, M.; Monnier, F.; Shchetnikov, G. T.; Titanyuk, I. D.; Osipov, S.
N.; Toupet, L.; D e´ rien, S.; Dixneuf, P. H. Org. Lett. 2005, 7, 3741.
15) Kim, B. G.; Snapper, M. L. J. Am. Chem. Soc. 2006, 128, 52.
16) Ni, Y.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 2609.
17) Zuo, G.; Louie, J. Angew. Chem., Int. Ed. 2004, 43, 2277.
18) As representative synthesis examples, see: (a) Wender, P. A.; Dyckman,
A. J.; Husfeld, C. O.; Scanio, M. J. C. Org. Lett. 2000, 2, 1609. (b)
Wasserman, H. H.; Hearn, M. J.; Cochoy, R. E. J. Org. Chem. 1980, 45,
(
(
(
(
Actually, the initial attempt at transformation13 of the enyne
1
a with 2.4 equiv of N2CHSiMe3 (2 M in hexane) and 5 mol
2
874. (c) Sala u¨ n, J.; Marguerite, J. Org. Synth. 1985, 63, 147. (d)
Schaumann, E.; Kirschning, A.; Narjes, F. J. Org. Chem. 1991, 56,
17.
(19) Le Paih, J.; D e´ rien, S.; O¨ zdemir, I.; Dixneuf, P. H. J. Am. Chem. Soc.
2000, 122, 7400.
7
6038 J. AM. CHEM. SOC.
9
VOL. 129, NO. 18, 2007