a
p s s
1700029 (6 of 6)
C. Jiang et al.: Diisopropylammonium-cation based molecular crystals
4 Conclusions In summary, six diisopropylammo- [12] A. S. Tayi, A. K. Shveyd, A. C.-H. Sue, J. M. Szarko, B. S.
Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L.
Stern, and W. F. Paxton, Nature 488, 485–489 (2012).
[13] S. Horiuchi and Y. Tokura, Nature Mater. 7, 357–366
(2008).
[14] A. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, and S. I.
Stupp, Nature Chem. 7, 281–294 (2015).
[15] A. L. Solomon, Phys. Rev. 104, 1191–1191 (1956).
[16] S. Hoshino, T. Mitsui, F. Jona, and R. Pepinsky, Phys. Rev.
107, 1255–1258 (1957).
[17] D.Bordeaux,J.Bornarel,A.Capiomont,J.Lajzerowicz-Bonneteau,
J. Lajzerowicz, and J. F. Legrand, Phys. Rev. Lett. 31, 314–317
(1973).
nium (DIPA) cation-based single crystals were synthesized,
five of which displayed above-room-temperature dielectric
transitions and ferroelectric polarizations. A comparative
study revealed that the associated anions (Fꢀ, Clꢀ, Brꢀ, Iꢀ,
NOꢀ3 , and ClOꢀ4 ) played an important role in the
ferroelectric properties of the DIPA-X compounds, even
when the ferroelectricity originated from an order–disorder
transition of the DIPA cation. The monoatomic anions
(halogen anions) of the coordinated crystals exhibited more
prominent ferroelectric properties than the polyatomic ones,
which was attributed to different mechanisms for the
origination of ferroelectricity, namely, the former was from
the transformation of diisopropylammonium cations while
the latter was from the configuration transformation of
anions. On the other hand, the ferroelectric phase-transition
temperature and polarization of the halogen anions
coordinated crystals decreased with the increase of the
atomic number from Fꢀ to Iꢀ, which were ascribed to the
change of the electronegativity of the anions. From this
study, monoatomic anions of high electronegativity were
ꢀ ꢀ
[18] Z. Pająk, P. Czarnecki, B. Szafranska, H. Małuszynska, and
Z. Fojud, J. Chem. Phys. 124, 204–211 (2006).
[19] R. E. Cohen, Nature 358, 136–138 (1992).
[20] B. Jaffe, Piezoelectric Ceramics, (Elsevier, Amsterdam, The
Netherlands 2012).
[21] D.-W. Fu, H.-L. Cai, Y. Liu, Q. Ye, W. Zhang, Y. Zhang,
X.-Y. Chen, G. Giovannetti, M. Capone, and J. Li, Science
339, 425–428 (2013).
[22] A. Piecha, A. Ga
CrystEngComm 15, 940–944 (2013).
more recommendable for the search of the molecular-ionic [23] F. Da-Wei, Z. Wen, C. Hong-Ling, G. Jia-Zhen, Z. Yi, and X.
̨gor, R. Jakubas, and P. Szklarz,
Ren-Gen, Adv. Mater. 23, 5658–5662 (2011).
[24] C. Jiang, H. Lin, C. Luo, Y. Zhang, J. Yang, H. Peng, and
C.-G. Duan, J. Cryst. Growth 438, 25–30 (2016).
[25] G. Reiß, Acta Crystallogr. Sect. C: Cryst. Struct. Commun.
54, 1489–1491 (1998).
type ferroelectrics with high Tc and polarization values.
Acknowledgements This work was supported by the 973
Program No. 2014CB921104 and the NSF of China (Grant Nos.
61671206, 61201071).
[26] J. P. Lommerse, A. J. Stone, R. Taylor, and F. H. Allen, J.
Am. Chem. Soc. 118, 3108–3116 (1996).
[27] R. Sanderson, J. Chem. Educ. 31, 2 (1954).
References
[1] M. E. Lines and A. M. Glass, Principles and Applications of [28] D.-H. Wu and L. Jin, Inorg. Chem. Commun. 29, 151–156
Ferroelectrics and Related Materials, (Oxford University
(2013).
Press, Oxford, UK, 1977).
[2] J. Scott, Science 315, 954–959 (2007).
[3] J. Valasek, Phys. Rev. 17, 475 (1921).
[29] Y. Zhang, Y. Liu, H. Y. Ye, D. W. Fu, W. Gao, H. Ma, Z. Liu,
Y. Liu, W. Zhang, and J. Li, Angew. Chem. 126, 5164–5168
(2014).
[4] H. Sato and K. Toda, Appl. Phys. 13, 25–28 (1977).
[5] M. Shimizu, Jpn. J. Appl. Phys. 54, 10N001/001 (2015).
[6] Z.-G. Ye, Handbook of Advanced Dielectric, Piezoelectric [31] Z. Paja
[30] P. Czarnecki, W. Nawrocik, Z. Pajak, and J. Wasicki, J.
Phys.: Condens. Matter 6, 4955 (1994).
ꢀ
ꢀ
̨
and Ferroelectric Materials: Synthesis, Properties and
[7] U. Weber, G. Greuel, U. Boettger, S. Weber, D. Hennings,
and R. Waser, J. Am. Ceram. Soc. 84, 759–766 (2001).
[8] A. J. Lovinger, Science 220, 1115–1121 (1983).
[9] Q. Zhang, V. Bharti, and X. Zhao, Science 280, 2101–2104
(1998).
Nakamura, and R.-G. Xiong, Phys. Rev. Lett. 107, 147601
(2011).
€
[33] G. Kresse and J. Furthmuller, Comp. Mater. Sci. 6, 15–50
(1996).
[34] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.
[10] S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh,
77, 3865 (1996).
R. Shimano, R. Kumai, and Y. Tokura, Nature 463, 789–792 [35] R. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651
(2010). (1993).
[11] S. Horiuchi, R. Kumai, and Y. Tokura, Angew. Chem. Int. [36] D. Vanderbilt and R. King-Smith, Phys. Rev. B 48, 4442
Ed. 46, 3497–3501 (2007).
(1993).
ß 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim