10
V. M. UVAROV AND D. A. DE VEKKI
CH3CCH3); 0.91 (t, J ¼ 7.4 Hz, 3, 2), 1.15 (d, J ¼ (CHCH2CH), 36.34 (CH2CH2S), 36.77 (CH2CH2S),
3
8.1 Hz, 1, CHCHHCH), 1.26 (s, 3H, CH3CCH3), 1.41 38.02 (CH3CCH3), 40.79 (C ¼ CHCH2CH), 45.68 (CCHC),
(m, 2, 2), 1.56 (m, 2, 2), 2.01 (m, 117.33 (CH2CCH), 126.93 (Ph), 128.43 (Ph), 128.86 (Ph),
3
3
2
1, CCHC), 2.07 (m, 1H, C ¼ CHCH2CH); 2.22–2.25 (m, 138.62 (Ph), 146.63 (Ph). EI-MS: m/z (Ir (%)): 274 (0.8)
2, CH2CH2S), 2.23 (m, 2, C ¼ CHCH2), 2.35 (m, 1, [M þ 2]þ, 272 (18) [M]þ, 207 (12), 181 (100) [M-C7H7]þ,
147 (31), 135 (13) [C10H15]þ, 133 (8) [C10H12]þ, 121 (28),
CHCH2CH), 2.50 (m, 4, CH2SCH2), 5.24 (br. s., 1,
119 (13), 105 (29), 103 (8) [C4H9SCH2]þ, 93 (19) [C7H9]þ,
91 (91) [C7H7]þ, 79 (22) [C6H7]þ, 77 (15) [C6H5]þ, 65 (17)
[C5H5]þ, 55 (11) [C4H7]þ, 41 (27) [C3H5]þ, 29 (8) [C2H5]þ,
27 (4) [C2H3]þ. Anal cald. for C17H30S (266.48): C, 76.62;
H, 11.35; S, 12.03. Found: C, 76.66; H, 11.38; S, 12.76.
2). 13C NMR (CDCl3, 50 MHz): d ppm 13.53
( 2), 21.05 (CH3CCH3), 21.86 ( 2), 26.15
3
3
(CH3CCH3), 29.95 ( 2), 31.11 (C ¼ CHCH2)),
3
2
31.51 (CHCH2CH), 31.68 (CH2CH2H2S), 37.12
(CH2CH2S), 37.85 (CH3CCH3), 40.65 (C ¼ CHCH2CH),
45.58 (CCHC), 116.99 (CH2CCH), 146.70 (H2CCH). EI-
MS: m/z (Ir (%)): 240 (0.3) [M þ 2]þ, 238 (6) [M]þ, 207 (2),
195 (4) [M-C3H7]þ, 181 (68) [M-C4H9]þ, 169 (19), 148 (9),
135 (45) [C10H15]þ, 133 (59) [C10H12]þ, 119 (14), 105 (100),
103 (8) [C4H9SCH2]þ, 93 (19) [C7H9]þ, 91 (32) [C7H7]þ, 79
(22) [C6H7]þ, 77 (16) [C6H5]þ, 61 (34) [C2H5S]þ, 55 (11)
[C4H7]þ, 41 (27) [C3H5]þ, 29 (11) [C2H5]þ, 27 (5) [C2H3]þ.
Anal cald. for C15H26S (238.43): C, 75.76; H, 10.99; S, 13.45.
Found: C, 75.80; H, 10.97; S, 14.05.
Bis-l-di[(1)-10-camphrothiolato]dicarbonylrhodium(I)
[Rh(CO)2(l-SCmf)]2. The flask equipped with a capillary
was charged with 5 mL of DCM and the solvent was satu-
rated with freshly generated CO (H2SO4 þ formic acid) for
15 min. Then 79.8 mg (0.205 mmol) of [Rh(CO)2Cl]2 was
added and CO was bubbled for another 20 min followed by
addition of 75.65 mg (0.41 mmol) of (1S)-10-camphorthiol
(the red solution almost immediately turned yellow-orange).
The mixture was stirred for 50 min at r.t. with constant flow
of CO. Removal of solvent and volatiles under vacuum
(1R)-Hexylnopyl sulfide (HexSNpl). Reaction was carried
out as described for butylnopyl sulfide. Vacuum distillation
(Bp. 116 j at 2 mm Hg) afforded 10.2 g (65%) of pure hexyl-
20
afforded ꢂ126.8 mg (90%) of orange-brown complex. [a]D
1
¼ þ54.5 (c 0.0067, CHCl3). Mp. ¼ 135 ꢂC (decomp.). H
nopyl sulfide. [a]D ¼ –28.9j (c 0.3, CHCl3). 1H NMR
20
NMR (CDCl3, 300 MHz): d ppm 0.86 (s, 3H, 3),
3
1.03 (s, 3H, 3), 1.34–1.40 (m, 1H, CCHHCH2),
(CDCl3, 300 MHz): d ppm 0.84 (s, 3H, CH3CCH3); 0.88 (t, J
3
1.55–1.62 (m, 1, CCH2CCHH), 1.83 (d, J ¼ 18.4 Hz, 1H,
CHHCO), 1.92–2.05 (m, 2, CCHHCHH), 2.19–2.26 (m,
1H, CH2CHCH2); 2.32 (d, J ¼ 18.4 Hz, 1H, CCHHCO), 3.10
(d, J ¼ 14.0, 1H, SCHH), 3.48 (d, J ¼ 14.0, 1H, SCHH). 13C
¼ 6.6 Hz, 3, 2), 1.16 (d, J ¼ 8.1 Hz, 1,
3
CHCH2CH), 1.28 (s, 3H, CH3CCH3), 1.37 (m, 2,
3
2), 1.56 (m, 2, 2), 1.99 (m, 1, CCHC), 2.06
3
2
(m, 1H, C ¼ CHCH2CH), 2.19–2.22 (m, 2, CH2CH2S),
2.23 (m, 2, C ¼ CHCH2), 2.35 (m, 1, CHCH2CH), 2.52
(m, 4, CH2SCH2), 5.26 (br. s., 1, 2). 13C NMR
NMR (CDCl3, 50 MHz): d ppm 20.07 ( 3), 20.50
3
( 3), 25.65 (CCH2CH2), 26.83 (CH2CO), 33.30
3
(CCH2CH2), 42.90 (SCH2), 43.43 (CH2CHCH2), 48.10
(CH3C), 61.90 (SCH2C), 184.09, 185.5 (RhCO), 215.77
(CCO). IR, cmꢀ1: 2954, 2923, 2887 (ꢀ -); 2070, 2050,
2014, 1990, 1969 (ꢀ -); 1743; 1657, 1601, 1514, 1453,
1415, 1390, 1320, 1244, 1061, 1043, 1023, 961, 815 (d -H);
576; 511; 488. Anal Cald. for C24H30O6Rh2S2 (684.43): C,
42.12; H, 4.42; S, 9.37. Found: C, 42.17; H, 4.44; S, 11.12.
Bis-l-di[(1)-neomenthylthiolato]dicarbonylrhodium(I)
[Rh(CO)2(l-SNmth)]2. The flask equipped with a capillary
was charged with 4 mL of DCM and the solvent was saturated
with freshly generated CO (H2SO4 þ formic acid) for 15 min.
Then 28.2 mg (0.072 mmol) of [Rh(CO)2Cl]2 was added and
CO was bubbled for another 20 min followed by addition of
25 mg (0.145 mmol) of (1S)-neomenthylthiol (the red solution
gradually turned red-orange). The mixture was stirred for 20h
at r.t. with constant flow of CO. Removal of solvent and vola-
tiles under vacuum afforded 19 mg (38%) of orange-brown
oil, which crystallized upon standing. Mp. ¼ 166–168 ꢂC. IR,
cmꢀ1: 2949, 2922, 2867, 2840 (ꢀ -); 2072, 2029, 2017 (ꢀ
-); 1836; 1454, 1378, 1366, 1279, 1260, 1089, 1026, 1017 (d
-H); 805. Anal Cald. for C24H38O4Rh2S2 (660.49): C, 42.73;
H, 5.61; S, 9.92. Found: C, 42.78; H, 5.63; S, 11.35.
(CDCl3, 50 MHz):
(CH3CCH3), 22.59 ( 2), 26.30 (CH3CCH3), 28.63
d
ppm 14.06 ( 2), 21.22
3
3
( 2), 29.67 ( 2), 30.07 (S
2
3
2
3
2
2
2), 31.25 (C ¼ CHCH2), 31.47 (S 2), 31.50
2
2
2
(CHCH2CH), 32.17 (CH2CH2S), 37.28 (CH2CH2S),
37.99 (CH3CCH3), 40.77 (C ¼ CHCH2 CH), 45.69 (CCHC),
117.14 (CH2CCH), 146.81 (H2CCH). EI-MS: m/z (Ir (%)):
268 (0.5) [M þ 2]þ, 266 (9) [M]þ, 207 (2), 198 (23) [M-
C5H8]þ, 181 (87) [M-C6H13]þ, 148 (17), 135 (58) [C10H15]þ,
133 (67) [C10H12]þ, 131 (8) [C6H13SCH2]þ, 119 (16), 105
(100), 93 (21) [C7H9]þ, 91 (32) [C7H7]þ, 79 (22) [C6H7]þ, 77
(16) [C6H5]þ, 61 (23) [C2H5S]þ, 55 (23) [C4H7]þ, 43 (31)
[C3H7]þ, 41 (30) [C3H5]þ, 29 (7) [C2H5]þ, 27 (5) [C2H3]þ.
Anal cald. for C18H24S (272.44): C, 79.35; H, 8.88; S, 11.77.
Found: C, 79.40; H, 8.85; S, 12.34.
(1R)-Benzylnopyl sulfide (BnSNpl). Reaction was carried
out as described for butylnopyl sulfide. Vacuum distillation
j
(Bp. 140 at 2 mm Hg) afforded 10.8 g (67%) of pure hex-
ylnopyl sulfide. [a]D ¼ –29.5j (c 0.6, CHCl3). 1H NMR
20
(CDCl3, 300 MHz): d ppm 0.86 (s, 3H, CH3CCH3), 1.18 (d,
J ¼ 8.1 Hz, 1, CHCH2CH), 1.30 (s, 3H, CH3CCH3), 2.00
(m, 1, CCHC), 2.07 (m, 1H, C ¼ CHCH2CH), 2.19–2.23
(m, 2, CH2CH2S), 2.35 (m, 1, CHCH2CH), 2.44 (d.t.,
J ¼ 1.9, 7.1 Hz, 2, CH2S, Npl), 3.76 (s, 2, PhCH2S), 5.26
(br. s., 1, 2), 7.27–7.38 (m, 5H, Ph). 13C NMR
Conclusions
(CDCl3, 50 MHz):
d
ppm 21.27 (CH3CCH3), 26.34 In summary, we have shown the first example of catalytic
(CH3CCH3), 29.37 (SCH2Ph), 31.30 (C ¼ CHCH2), 31.69 systems for hydrosilylation of ketones based on rhodium