Organic Letters
Letter
E.; Homs, A.; Yu, J.-Q. Science 2014, 343, 1216. (c) Li, S.; Chen, G.;
Feng, C.-G.; Gong, W.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 5267.
(6) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O.
Chem.Eur. J. 2010, 16, 2654.
Scheme 6. Transformations of Alkenylated Amide
(7) Hydrofunctionalization; Ananikov, V. P., Tanaka, M., Eds.;
Springer-Verlag: Berlin, 2013.
(8) For selected examples on transition-metal-catalyzed alkenylation
of (hetero)aryl C−H bonds with alkynes, see: (a) Jia, C.; Lu, W.;
Oyamada, J.; Kitamura, T.; Matsuda, K.; Irie, M.; Fujiwara, Y. J. Am.
Chem. Soc. 2000, 122, 7252. (b) Kuninobu, Y.; Tokunaga, Y.; Kawata,
A.; Takai, K. J. Am. Chem. Soc. 2006, 128, 202. (c) Nakao, Y.; Kanyiva,
K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448. (d) Schipper, D.
J.; Hutchinson, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6910.
(e) Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. 2013, 135, 1264.
(f) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J.
Am. Chem. Soc. 2014, 136, 5424.
(9) Liu, B.; Zhou, T.; Li, B.; Xu, S.; Song, H.; Wang, B. Angew. Chem.,
Int. Ed. 2014, 53, 4191.
(10) (a) Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org. Chem. 2013,
19. (b) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52,
11726.
products can also serve as versatile intermediates for further
transformations. Further studies to extend the reaction scope
are ongoing in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, characterization data, X-ray crystallo-
graphic data, copy of 1H−1H NOESY spectra of 3b, and copies
of 1H, 13C NMR spectra for all new compounds. The
Supporting Information is available free of charge on the
(11) (a) Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed.
2007, 46, 8872. (b) Nakao, Y.; Kashihara, N.; Kanyiva, K. S.; Hiyama,
T. J. Am. Chem. Soc. 2008, 130, 16170. (c) Mukai, T.; Hirano, K.;
Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 6410. (d) Tsai, C.-C.;
Shih, W.-C.; Fang, C.-H.; Li, C.-Y.; Ong, T.-G.; Yap, G. P. A. J. Am.
Chem. Soc. 2010, 132, 11887.
(12) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.; Chatani, N. J. Am.
Chem. Soc. 2011, 133, 14952.
AUTHOR INFORMATION
Corresponding Author
■
(13) (a) Nakao, Y.; Morita, E.; Idei, H.; Hiyama, T. J. Am. Chem. Soc.
2011, 133, 3264. (b) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2014,
136, 898. (c) Wu, X.; Zhao, Y.; Ge, H. J. Am. Chem. Soc. 2014, 136,
1789. (d) Li, M.; Dong, J.; Huang, X.; Li, K.; Wu, Q.; Song, F.; You, J.
Chem. Commun. 2014, 50, 3944. (e) Wu, X.; Zhao, Y.; Ge, H. Chem.
Eur. J. 2014, 20, 9530.
Notes
The authors declare no competing financial interest.
(14) Corbet, M.; Campo, F. D. Angew. Chem., Int. Ed. 2013, 52, 9896.
(15) For a selected example of using i-PrOH as a hydrogen source,
see: Ohashi, M.; Taniguchi, T.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133,
14900.
(16) For biological properties, see: (a) Kitson, R. R. A.; Millemaggi,
A.; Taylor, R. J. K. Angew. Chem., Int. Ed. 2009, 48, 9426. (b) Willey, J.
M.; Gaskell, A. A. Chem. Rev. 2011, 111, 174.
(17) For selected examples on the synthesis of γ-butyrolactone by
catalysis, see: (a) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem.
Soc. 2004, 126, 14370. (b) Bigi, M. A.; Reed, S. A.; White, M. C. Nat.
Chem. 2011, 3, 216. (c) Huang, L.; Wang, Q.; Liu, X.; Jiang, H. Angew.
Chem., Int. Ed. 2012, 51, 5696. (d) Cheng, Y. A.; Chen, T.; Tan, C. K.;
Heng, J. J.; Yeung, Y.-Y. J. Am. Chem. Soc. 2012, 134, 16492.
(e) McInturff, E. L.; Mowat, J.; Waldeck, A. R.; Krische, M. J. J. Am.
Chem. Soc. 2013, 135, 17230.
(18) (a) Schlecht, M. F.; Kim, H.-J. Tetrahedron Lett. 1986, 27, 4889.
(b) McDonald, F. E.; Towne, T. B. J. Am. Chem. Soc. 1994, 116, 7921.
(c) Beihoffer, L. A.; Craven, R. A.; Knight, K. S.; Sisson, C. R.;
Waddell, T. G. Trans. Met. Chem. 2005, 30, 582.
ACKNOWLEDGMENTS
■
This work was supported by grants from 973 Program
(2011CB808601) and the National NSF of China (Nos.
21432005, 21272160, and 21321061).
REFERENCES
■
(1) (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2009, 48, 5094. (b) Colby, D. A.; Bergman, R. G.; Ellman, J. A.
Chem. Rev. 2010, 110, 624. (c) Yeung, C. S.; Dong, V. M. Chem. Rev.
2011, 111, 1215. (d) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev.
2011, 111, 1780. (e) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H.
Chem. Rev. 2012, 112, 5879. (f) Bariwal, J.; Eycken, E. V. Chem. Soc.
Rev. 2013, 42, 9283. (g) Louillat, M.-L.; Patureau, F. W. Chem. Soc.
Rev. 2014, 43, 901. (h) Thirunavukkarasu, V. S.; Kozhushkov, S. I.;
Ackermann, L. Chem. Commun. 2014, 50, 29.
(2) For selected reviews on the synthesis of natural products via C−
H activation, see: (a) McMurray, L.; O’Hara, F.; Gaunt, M. J. Chem.
Soc. Rev. 2011, 40, 1885. (b) Chen, D. Y.-K.; Youn, S. W. Chem.Eur.
J. 2012, 18, 9452. (c) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K.
Angew. Chem., Int. Ed. 2012, 51, 8960.
(19) For the plausible mechanism of the PCC-promoted
lactonization, see the Supporting Information (SI), Part IV.
(3) For a review on the synthesis of functionalized molecules via C−
H activation, see: Segawa, Y.; Maekawa, T.; Itami, K. Angew. Chem., Int.
Ed. 2015, 54, 66.
(4) For selected application examples of γ,δ-unsaturated aliphatic
carboxylic acids, see: (a) Paterson, I.; Perkins, M. V. Tetrahedron 1996,
52, 1811. (b) Ishikawa, H.; Elliott, G. L.; Velcicky, J.; Choi, Y.; Boger,
D. L. J. Am. Chem. Soc. 2006, 128, 10596. (c) Singh, F. V.; Wirth, T.
Org. Lett. 2011, 13, 6504. (d) Faustino, H.; Alonso, I.; Mascarenas, J.
̃
́
L.; Lopez, F. Angew. Chem., Int. Ed. 2013, 52, 6526. (e) Campbell, E.
L.; Skepper, C. K.; Sankar, K.; Duncan, K. K.; Boger, D. L. Org. Lett.
2013, 15, 5306.
(5) (a) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132,
3680. (b) He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J.
D
Org. Lett. XXXX, XXX, XXX−XXX