Organic Letters
Letter
Scheme 6. Proposed Reaction Mechanism
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the DFG and the Fonds der
Chemischen Industrie. C.P.G. is grateful for a Ph.D. fellowship
from the Fonds der Chemischen Industrie. Dr. Manfred Keller
and Dr. Daniel Kratzert (both from the University of Freiburg)
are acknowledged for providing highly qualified NMR
measurements and X-ray crystal structure analyses. Technical
support by Gamze Ciplak and Joshua Emmerich (both from
the University of Freiburg), specifically for laboratory
assistance and HPLC separations, is acknowledged.
(L8), a rhodium(III) hydride complex A is generated upon
reaction with PPTS,16 followed by a hydrometalation of the
allene moiety in 1 to give the allylrhodium(III) intermediate B.
Subsequent nucleophilic attack of the indole at its C3-position
releases the spirocycle 3 in its protonated form, while
simultaneously regenerating the Rh(I) catalyst. This observed
regioselectivity is explicable by the greater nucleophilicity at
the C3-position compared to C2, despite its increased steric
hindrance.6b The spiroindoleneine 3 then undergoes an acid-
catalyzed stereospecific migration, after which the better
migrating group (higher lying HOMO of the migrating σ-
bond) is attached to C2 of the indole scaffold. Finally,
elimination of HX then releases the 1-vinyltetrahydrocarbazole
2.
To conclude, we have accomplished a highly enantiose-
lective tandem spirocyclization/stereospecific migration start-
ing from tethered, readily available 3-allenylindoles. The
reaction proceeds with perfect atom economy and only
requires low loadings of a commercially available catalyst.
The mildness of the present protocol is exemplified by a great
functional group tolerance. Further investigations regarding the
expansion of this method to alkynes as coupling partners or
other heteroatom-based tethers as well as its application in
synthesis will be the objective of future research in our
laboratories.
REFERENCES
■
(1) (a) Sundberg, R. J. The Chemistry of Indoles; Academic Press:
London, 1970. (b) Sundberg, R. J. Indoles; Academic Press: San
Diego, 1996. (c) Dewick, P. M., Ed. Medicinal Natural Products: A
Biosynthetic Approach; Wiley: New York, 2002. (d) Fattorusso, E.,
Scafati, O. T., Eds. Modern Alkaloids; Wiley-VCH: Weinheim, 2008.
(2) For a review on the significance of tetrahydrocarbazole natural
̈
products, see: Knolker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102,
4303.
(3) For selected review articles on Friedel−Crafts-type reactions
with indoles, see: (a) Poulsen, T. B.; Jørgensen, K. A. Chem. Rev.
2008, 108, 2903. (b) You, S.-L.; Cai, Q.; Zeng, M. Chem. Soc. Rev.
2009, 38, 2190. (c) Zeng, M.; You, S.-L. Synlett 2010, 2010, 1289.
(4) For selected reviews on allylic alkylation, see: (a) Trost, B. M.;
Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (b) Falciola, C. A.;
Alexakis, A. Eur. J. Org. Chem. 2008, 2008, 3765. (c) Zhuo, C.-X.;
Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558. (d) Butt, N. A.;
Zhang, W. Chem. Soc. Rev. 2015, 44, 7929. (e) Hethcox, J. C.;
Shockley, S. E.; Stoltz, B. M. ACS Catal. 2016, 6, 6207.
(5) (a) Bandini, M.; Melloni, A.; Piccinelli, F.; Sinisi, R.; Tommasi,
S.; Umani-Ronchi, A. J. Am. Chem. Soc. 2006, 128, 1424. (b) Bandini,
M.; Eichholzer, A. Angew. Chem. 2009, 121, 9697;(c) Angew. Chem.,
Int. Ed. 2009, 48, 9533. (d) Cera, G.; Crispino, P.; Monari, M.;
Bandini, M. Chem. Commun. 2011, 47, 7803. (e) Bandini, M.;
Gualandi, A.; Monari, M.; Romaniello, A.; Savoia, D.; Tragni, M. J.
Organomet. Chem. 2011, 696, 338.
(6) (a) Wu, Q.-F.; He, H.; Liu, W.-B.; You, S.-L. J. Am. Chem. Soc.
2010, 132, 11418. (b) Wu, Q.-F.; Zheng, C.; You, S.-L. Angew. Chem.
2012, 124, 1712;(c) Angew. Chem., Int. Ed. 2012, 51, 1680.
(7) Trost, B. M. Science 1991, 254, 1471.
(8) For a recent review, see: Koschker, P.; Breit, B. Acc. Chem. Res.
2016, 49, 1524.
(9) For examples of C−C bond formation, see: (a) Li, C.; Breit, B. J.
Am. Chem. Soc. 2014, 136, 862. (b) Beck, T. M.; Breit, B. Angew.
Chem. 2017, 129, 1929;(c) Angew. Chem., Int. Ed. 2017, 56, 1903.
(d) Grugel, C. P.; Breit, B. Org. Lett. 2018, 20, 1066. (e) Bora, P. P.;
Sun, G.-J.; Zheng, W.-F.; Kang, Q. Chin. J. Chem. 2018, 36, 20.
(f) Grugel, C. P.; Breit, B. Chem. - Eur. J. 2018, 24, 15223.
(10) For a recent review, see: Haydl, A. M.; Breit, B.; Liang, T.;
Krische, M. J. Angew. Chem. 2017, 129, 11466; Angew. Chem., Int. Ed.
2017, 56, 11312.
(11) For examples of C−C bond formation, see: (a) Beck, T. M.;
Breit, B. Org. Lett. 2016, 18, 124. (b) Cruz, F. A.; Chen, Z.; Kurtoic, S.
I.; Dong, V. M. Chem. Commun. 2016, 52, 5836. (c) Li, C.; Grugel, C.
P.; Breit, B. Chem. Commun. 2016, 52, 5840. (d) Beck, T. M.; Breit, B.
Eur. J. Org. Chem. 2016, 2016, 5839. (e) Cruz, F. A.; Dong, V. M. J.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures and analytical data for the
synthesized compounds, including H and 13C NMR
1
Accession Codes
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
D
Org. Lett. XXXX, XXX, XXX−XXX